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Abstract
With advancements in high-resolution scanners and high-performance computers, the use 
of whole slide imaging (WSI) in digital pathology has increased. WSI scans glass slides and 
stores them in digital format, making them immune to damage or discoloration, and enabling 
remote pathology review and peer review. Additionally, with the development of artificial intel-
ligence, research using deep learning models in pathology has become more widespread. In 
this study, the You Only Look Once (YOLO)v8 model was used to train artificial intelligence to 
detect apoptotic bodies commonly observed in rodent livers. A total of 1,558 rat liver images 
containing apoptotic bodies were collected and followed by labeling and data augmentation 
using flipping and rotation techniques to expand the dataset to 3,738 images. The dataset 
was then divided into training, validation, and test sets to develop and evaluate a model for 
object recognition. The training was conducted with an epoch set to 300. The YOLOv8 model 
detected apoptotic bodies with a mean average precision at 50% value of 0.882. Although 
the model’s accuracy for detecting individual apoptotic bodies may not seem extremely high, 
it is important to note that the size of apoptotic bodies is very small compared to hepatocytes, 
making them harder to detect. However, the model’s overall performance is expected to im-
proves significantly with a larger dataset. The YOLOv8 model successfully detected apoptotic 
bodies with high accuracy. This can help reduce the workload of toxicologic pathologists and 
decrease the time and cost involved in pathology review. Furthermore, with an increased 
dataset, even higher accuracy can be expected in the future.
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INTRODUCTION

Histopathology and digital pathology
Histopathological diagnosis procedure involves collecting animal tissues through necropsy, 

followed by fixation, trimming, tissue processing, embedding, and sectioning. The thin tissue 
sections obtained through these processes are placed on glass slides and stained [1]. The stained 
tissue slides are observed under a microscope to provide pathological information. Toxicopath-
ologists may need to examine between 100 and 10,000 slides, which is highly time-consuming 
and labor-intensive, leading to increased fatigue and potentially affecting diagnostic accuracy. 
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Furthermore, diagnoses made by the pathologists often rely on subjective judgment. To ensure 
accuracy, a peer review process involving consultations with other pathologists is necessary to 
finalize the diagnosis. However, during the process of transferring slides for peer review, there 
is a high risk of damage or loss. Additionally, communication limitations arise because meet-
ings are conducted using pre-saved images of lesions during the coordination of pathological 
findings. To address some of these difficulties, digital pathology has been actively utilized. 
Over 1,500 papers related to digital pathology have been published [2], and with the advance-
ments in high-resolution scanners and high-performance computers, its practical application 
has become fully feasible [3]. Whole slide imaging (WSI) in digital pathology refers to the 
process of scanning glass slides prepared from tissue specimens and storing them in a digital 
format on a computer. Compared to traditional slide preparation, digital pathology requires 
additional equipment, skilled personnel, and advanced information technology. Nevertheless, 
WSI enables diagnosis on a computer screen with a resolution comparable to that of an optical 
microscope, thereby enhancing accuracy and efficiency. Large-scale digital image data can be 
securely stored and shared using cloud systems and encryption technologies, facilitating re-
mote diagnosis and collaboration. Additionally, while physical glass slides are challenging to 
preserve over extended periods, digitized slides offer improved storage and retrieval capabili-
ties [4]. 

Artificial intelligence and object detection
The integration of artificial intelligence (AI) into digital pathology has further advanced the 

field by enabling automated lesion detection within WSI [5], reducing pathologists’ work-
loads, and mitigating both interobserver and intraobserver variability [6]. AI encompasses two 
primary subfields: machine learning and deep learning. Machine learning involves the auto-
matic identification of patterns, situational analysis, and decision-making based on data-driven 
algorithms [7]. In contrast, deep learning utilizes artificial neural networks or deep neural net-
works to derive conclusions from data. The primary difference between these technologies lies 
in the level of human intervention. For example, when an image of a car is input into a neural 
network for training, the machine extracts features such as wheels, mirrors, and door handles. 
In machine learning, humans must explicitly guide the process of visual feature extraction. 
However, in deep learning, the neural network autonomously analyzes data and hierarchically 
extracts features from low-level to high-level without human guidance. This automated learn-
ing process requires larger datasets and more complex models, enabling the learning of intri-
cate patterns. In pathology, object detection technology is widely applied, with deep learning 
models utilizing convolutional neural networks (CNN) delivering robust performance [8]. The 
key components of CNNs include convolution layers and pooling layers, which automatically 
extract essential features from input data. Specifically, convolution layers perform convolution 
operations across input data using small filters, known as kernels, at regular intervals. This 
process generates feature maps that capture low-level features like edges and textures and 
increasingly complex high-level features. By creating diverse feature maps, CNNs effectively 
learn the intricate structures of images. Pooling layers reduce the size of the feature maps gen-
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erated by convolution layers by removing unnecessary details while retaining critical features. 
Pooling operations, such as maximum pooling and average pooling, help eliminate noise and 
distortions, enhancing model learning efficiency and preventing overfitting. A representative 
object detection model utilizing these techniques is You Only Look Once (YOLO). The key 
feature of YOLO is its ability to process an input image in a single network pass to predict 
both the locations and classes of objects simultaneously [9]. This streamlined structure allows 
YOLO to perform object detection at high speed. Since its introduction in 2016, YOLO has 
evolved through multiple versions, from v1 to v8 [10]. The YOLOv8 model used in this study 
differs from previous YOLO models by employing an anchor-free detection method instead 
of anchor boxes. Traditional anchor boxes apply pre-defined rectangles of various sizes across 
image regions to predict object locations. While effective, this approach incurs high compu-
tational costs and suffers from reduced accuracy when object sizes differ significantly from 
the pre-defined anchors. In contrast, the anchor-free method adopts a center-based approach, 
predicting four distances around the object’s center point to determine object size and class 
information [11, 12]. Additionally, the YOLOv8 model employs a one-stage object detection 
method, which performs object localization and classification simultaneously rather than in 
separate steps, thereby enabling faster processing. Due to these advantages, such as reduced 
computational complexity and improved accuracy in detecting objects of various sizes and 
shapes, the YOLOv8 model was considered suitable for detecting apoptotic bodies, which are 
numerous and vary in size [13]. Our previous studies have also demonstrated the effective use 
of YOLO models for detecting various renal lesions in digital pathology images. Byun et al. 
and Bae et al. applied YOLO models (v4 and v8, respectively) to detect renal lesions, achiev-
ing high detection performance including up to 98.62% accuracy and notable improvements 
in diagnostic precision, even for complex, multi-lesion images [14, 15]. Apoptotic bodies are 
vesicles generated during the process of apoptosis, a form of programmed cell death. Apopto-
sis, or “programmed cell death,” was first described by Kerr in 1972 [16]. Apoptosis is a form 
of cell death that occurs naturally during development and aging, maintaining cellular homeo-
stasis in living organisms. There are three representative pathways of apoptosis: the extrinsic 
pathway, the intrinsic pathway, and the perforin/granzyme pathway, all of which ultimately 
generate apoptotic bodies, which are then phagocytosed by neighboring cells or macrophages 
[17]. In pathology, apoptosis is often compared with necrosis, another major type of cell death. 
Morphologically, apoptosis and necrosis must be clearly differentiated under optical microsco-
py. Necrosis causes cellular swelling and nuclear changes such as pyknosis, karyorrhexis, and 
karyolysis. In addition, necrosis is accompanied by inflammation and leakage of cellular com-
ponents. In contrast, apoptosis involves cellular shrinkage, no release of cellular components, 
and no inflammatory response. 

Apoptosis and study objective
Apoptotic bodies form through nuclear condensation, DNA fragmentation, and cellular 

fragmentation, which are rapidly phagocytosed by macrophages or adjacent cells [16]. In 
H&E-stained tissue slides, apoptotic bodies appear as round or oval structures with condensed 
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cytoplasm or nuclei, creating a hollow space that aids in their identification. Apoptotic bodies 
typically range from 1–5 μm in size [18, 19], requiring high magnification for microscopic 
observation. When more than ten apoptotic bodies are found within a single tissue, accurately 
analyzing these small structures can become time-consuming. Therefore, this study aims to 
automate the detection of apoptotic bodies using the YOLOv8 model, which is both fast and 
accurate, to significantly reduce analysis time [20]. By applying the latest digital pathology 
technologies and the YOLOv8 model, this study seeks to automate the detection of apoptotic 
bodies in rat liver tissue and analyze its accuracy and efficiency.

MATERIALS AND METHODS

Data collection
In this study, a 13-week repeated dose toxicity test was conducted, and a total of 478 images 

of rat livers containing apoptotic bodies were collected from Biotoxtech (Cheongju, Korea), a 
non-clinical toxicology testing institution in South Korea. Additionally, 46 WSIs of rat livers 
were obtained from the Animal Resource Bank, Ministry of Food and Drug Safety (Cheongju, 
Korea). The WSIs were magnified to approximately 40 × using CaseViewer, and 1,080 images 
containing apoptotic bodies were extracted from the WSIs, resulting in a total of 1,558 images 
for the study.

Image labeling
Labeling is the process of preparing data so that the model can accurately learn the location 

and class of objects when training on images. All 1,559 images were labeled using the Robo-
flow platform.

Data augmentation
Data augmentation involves increasing the number and diversity of labeled images using 

various techniques. In this study, two data augmentation methods were applied: flip (horizon-
tal and vertical symmetry) and rotation. These techniques were chosen to allow the model to 
recognize objects from different orientations and angles. The flip technique mirrors the images 
horizontally or vertically to allow the model to recognize objects regardless of their orienta-
tion, while the rotation technique allows the model to learn to recognize objects from various 
angles. After augmentation, the number of images increased to 3,738. This process enables the 
model to learn various patterns of the target objects, helps prevent overfitting, and improves 
generalization performance.

Composition of the dataset
The augmented images were divided into a training set, validation set, and test set for the 

training process. The training set is used to enable the model to learn object patterns and to 
refine its weights during the training process. The validation set is used during training to eval-
uate the model’s performance, while the test set is used to assess the final performance of the 
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trained model.

RESULTS

Annotation and detection of apoptotic bodies using You Only Look Once v8
Fig. 1 illustrates the process of annotating apoptotic bodies using the Roboflow platform. 

The apoptotic bodies (thick arrows) were manually labeled based on morphological charac-
teristics observed in H&E-stained rat liver tissue. Fig. 2 presents the object detection results 
of apoptotic bodies in H&E-stained rat liver tissue using the YOLOv8 model. The detected 
apoptotic bodies are shown within red bounding boxes, with confidence scores (e.g., 0.75, 0.60) 
displayed above each box. The model demonstrates its ability to detect small apoptotic struc-
tures with high precision in histopathological imaging.

Evaluation of object detection model training
The total loss value was calculated based on the fundamental loss components of the 

YOLOv8 model, namely localization, classification, and objectness losses. This metric was 
used to evaluate whether the model was learning effectively prior to assessing its detection ac-
curacy. As shown in Fig. 3, the total loss consistently decreased as training progressed. A steep 
decline occurred during the initial epochs, followed by a more gradual reduction, suggesting 
stable convergence of the model. To prevent overfitting, the training process was limited to 
300 epochs.

Precision-recall curve
The Precision-Recall curve visualizes the relationship between precision and recall. The 

Area Under the Curve (AUC; thick arrow) calculated from this graph represents the mean 

Fig. 1. Annotation of apoptotic bodies using the Roboflow platform in H&E-stained rat liver tissue (× 40). Process of manually labeling apoptotic bodies 
in H&E-stained rat liver tissue images using the Roboflow platform. Apoptotic bodies were marked based on cell morphological features and served as the first 
step in building a dataset.
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Fig. 2. Detection of apoptotic bodies in H&E-stained rat liver tissue using the YOLOv8 model (× 40). The 
result of automatically detecting apoptotic bodies in H&E-stained rat liver tissue using the YOLOv8 model. The 
detected apoptotic bodies are indicated by red bounding boxes, with a confidence score above the boxes. The 
model demonstrates high accuracy in detecting even small apoptotic structures. YOLO, You Only Look Once.

Fig. 3. Training loss curve of YOLOv8 model over 300 epochs. The graph presents the total loss during the 
training phase, comprising localization, classification, and objectness losses. The curve shows a sharp decrease in 
the early epochs, followed by gradual convergence, indicating stable learning behavior throughout the 300 training 
epochs. YOLO, You Only Look Once.
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Average Precision (mAP@0.5), a key metric for evaluating the overall performance of object 
detection. Here, mAP@0.5 refers to the average precision at an Intersection over Union (IoU) 
threshold of 0.5, which signifies the overlap between the predicted bounding boxes and the 
ground truth bounding boxes. As shown in Fig. 4, the YOLOv8 model achieved a mAP@0.5 
of 0.881 in detecting apoptotic bodies. In addition to the mAP@0.5 value, the model achieved 
a precision of 1.00, a recall of 0.97, and an F1 score of 0.82, further confirming its robust per-
formance in detecting apoptotic bodies.

DISCUSSION

In this study, the YOLOv8 model demonstrated an accuracy of approximately 88% in de-
tecting apoptotic bodies, confirming its potential as a tool for enhancing digital pathology 
workflows. The model showed strong performance in terms of precision (1.00), recall (0.97), 
F1 score (0.82), and mean Average Precision (mAP) of 0.881. These results indicate that 
YOLOv8 is highly effective for identifying apoptotic bodies in H&E-stained rat liver tissue, 
supporting its practical application in pathological diagnosis. 

The automation of apoptotic body detection through deep learning significantly reduces the 
workload of pathologists. Traditionally, the identification of apoptotic bodies requires high 
magnification and is time-consuming. In contrast, the YOLOv8 model enables rapid and ac-
curate detection, streamlining the diagnostic process. By integrating this model into the digital 
pathology pipeline, pathologists can perform quicker slide reviews, thereby improving both 
efficiency and diagnostic reliability.

Fig. 4. Precision-recall curve of the YOLOv8. The model achieved an mAP@0.5 of 0.881 (88.1%) for apoptotic 
body detection, indicating excellent overall performance. The highlighted region marked by the black arrow shows 
the portion of the curve where precision rapidly decreases as recall approaches its maximum. YOLO, You Only Look 
Once.



YOLOv8-based diagnosis of apoptotic bodies in rat liver

104  |  http://www.jbtr.or.kr https://doi.org/10.12729/jbtr.2025.26.4.97

Despite its success, the model still faces challenges in differentiating between apoptotic 
bodies and other small lesions, such as inclusion bodies, which share similar visual character-
istics. The quality of data played a crucial role in achieving the model’s performance. Initially, 
a dataset of 1,000 images was used, and the model achieved an accuracy of 83.8%. With the 
addition of 558 more images, the final dataset consisted of 1,558 labeled images, leading to 
a performance increase to 88.1%. The use of data augmentation further enhanced detection 
performance by expanding the training data to 3,738 images. These findings underscore the 
importance of both data quantity and diversity in training deep learning models for medical 
image analysis.

Small object detection remains a persistent challenge in computer vision, particularly in 
pathology where critical features like apoptotic bodies are minute and sometimes ambiguous. 
However, advancements in deep learning—especially object detection algorithms such as 
YOLOv8—have improved the model’s capability to localize and classify small features. With 
continued improvements, it is anticipated that the accuracy of such models could exceed 95%, 
especially when trained with high-resolution data such as WSIs from diverse tissue types. 

YOLOv8 has demonstrated excellent performance in apoptotic body detection, particularly 
in whole-slide image analysis, where its one-stage detection enables fast inference and high 
computational efficiency. In contrast, two-stage detection models such as Faster R-CNN and 
Mask R-CNN typically achieve higher localization accuracy, but their multi-step pipelines 
result in slower inference time. The YOLO series is currently available up to version 11, and 
future iterations are expected to further improve detection accuracy. These advancements are 
likely to enhance the practical utility of YOLO-based approaches, providing an improved bal-
ance between speed and accuracy in pathological image analysis.

Labeling quality is another critical factor influencing model accuracy. In this study, all anno-
tations were manually created using the Roboflow platform. Although manual labeling ensures 
high accuracy, it is labor-intensive and can become inconsistent when many small objects are 
present in a single image. This inconsistency may directly affect the learning process of the 
model. To address this, future research should explore automated labeling methods, possibly 
integrating Natural Language Processing (NLP) techniques to generate consistent annotations. 
Automating the annotation process would significantly improve both efficiency and scalability 
of training data preparation. 

AI-based technologies have been increasingly applied to support lesion detection in toxico-
pathology. Numerous studies have demonstrated that deep learning–based AI systems can en-
hance diagnostic efficiency and reduce interobserver variability in toxicological assessments. 
In this context, the integration of AI approaches such as YOLOv8 is consistent with current 
technological trends and is expected to facilitate the development of automated and reproduc-
ible digital toxicopathology workflows.

Apoptosis plays a critical role in various disease models, including liver toxicity, neurode-
generative disorders, immune-mediated injuries, and chemotherapy-induced tissue damage. 
Accordingly, automated detection and quantification of apoptotic bodies is expected to provide 
both research and clinical utility across these disease models.
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The practical implications of this study are notable. The developed model has potential to 
assist pathologists by providing preliminary screenings of digital slides, enabling them to fo-
cus more on complex diagnostic tasks. Additionally, by integrating AI-based detection systems 
into real clinical workflows, the overall speed and accuracy of diagnoses can be enhanced. For 
broader clinical applicability, future work should aim to validate the model across multiple 
lesion types and various organ tissues, as well as to develop comprehensive datasets that rep-
resent diverse pathological conditions.
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