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Abstract

Medial patellar luxation is a common orthopedic disorder in dogs, and advanced cases with
severe skeletal deformities or femoropatellar osteoarthritis are often unresponsive to conven-
tional techniques. Patellar groove replacement (PGR) has been proposed as an alternative
surgical option; however, systematic comparisons of coating technologies for veterinary
PGR implants remain limited. This study aimed to evaluate the physicochemical properties,
biological compatibility, and functional performance of a newly developed titanium nitride
(TiN)—coated PGR system compared with a clinically available amorphous diamond-like car-
bon (ADLC)—coated device. TiN-coated prototypes were fabricated using Ti-6Al-4V alloy by
injection molding combined with arc ion plating, which requires simpler equipment and lower
production costs than the vacuum plasma deposition used for ADLC. Physicochemical eval-
uations, including corrosion resistance, hardness, surface roughness, and coating thickness,
were conducted following International Organization for Standardization (ISO) and Korean
Industrial Standards (KS) guidelines. In vitro biocompatibility was assessed using MTT and
cell adhesion assays with L-929 fibroblasts, while inflammatory cytokine profiling (interleukin
[IL]-1B and IL-6) in a rat subcutaneous model was used to evaluate local tissue responses.
Functional feasibility was examined in a canine femoral model bilaterally implanted with TiN-
or ADLC-coated PGR systems and monitored for one year through clinical, radiographic,
computed tomography (CT), magnetic resonance imaging , and micro-CT assessments. Both
coatings demonstrated excellent corrosion resistance and absence of cytotoxicity. TiN-coated
implants showed slightly greater hardness and coating thickness, with comparable surface
roughness and biocompatibility. All implants maintained stable fixation, proper patellar track-
ing, and satisfactory bone—implant integration. These findings indicate that TiN-coated PGR
implants achieve biological and mechanical performance equivalent to ADLC devices while
offering advantages in manufacturing simplicity, scalability, and cost-efficiency, supporting
their clinical applicability in veterinary orthopedics.
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INTRODUCTION

Patellar luxation is a common orthopedic disorder in dogs, especially in small breeds, with
medial patellar luxation (MPL) being much more prevalent than lateral luxation. The preva-
lence of MPL has been reported to reach 9.8% in some populations, underscoring its clinical
relevance. The etiology of MPL is multifactorial and developmental, involving congenital
skeletal deformities and periarticular soft tissue abnormalities [1-3]. In severe cases, espe-
cially grades III and IV, pronounced angular deformities such as distal femoral varus, femoral
torsion, and procurvatum disrupt the quadriceps mechanism, leading to chronic patellar in-
stability. Over time, adaptive changes such as medial retinacular contracture and quadriceps
muscle atrophy worsen maltracking, accelerate trochlear wear, and contribute to secondary
femoropatellar osteoarthritis [3—5].

Conventional surgical approaches such as trochleoplasty, tibial tuberosity transposition, and
soft tissue balancing generally provide satisfactory results in low-grade MPL but are often
insufficient in advanced cases with significant skeletal malalignment [6-8]. Corrective femo-
ral osteotomies have therefore been proposed; however, these procedures remain technically
demanding, rely heavily on precise preoperative planning, and carry a risk of complications
[9, 10]. Given these limitations, patellar groove replacement (PGR) has been introduced as
an alternative strategy for complicated cases, including severe femoropatellar osteoarthritis,
trochlear dysplasia, and failed prior surgeries. By replacing the native trochlear groove with a
prosthetic component, PGR aims to restore stable patellar tracking, preserve joint motion, and
minimize articular wear [11-15].

Advances in implant design and surface engineering have further expanded the potential of
PGR. Surface coatings such as amorphous diamond-like carbon (ADLC) and titanium nitride
(TiN) have been developed to improve wear resistance, corrosion resistance, and biocom-
patibility. ADLC coatings, composed of amorphous carbon with mixed sp* and sp? bonding,
exhibit extremely high hardness, excellent corrosion resistance, and a very low friction coeffi-
cient, which helps minimize wear and extend implant longevity. These properties have estab-
lished ADLC as an effective surface treatment for orthopedic and dental implants in both hu-
man and veterinary applications [16-20]. However, several limitations restrict its widespread
clinical adoption. ADLC coatings often suffer from weak adhesion to metallic substrates due
to internal residual stress, require high-vacuum plasma deposition systems with complex mul-
tistep processing, and involve high manufacturing costs. In addition, coating uniformity and
durability can be difficult to maintain on complex implant geometries, and delamination may
occur under cyclic mechanical loading [21, 22].

In contrast, TiN coatings can be fabricated through arc ion plating combined with injec-
tion-molded Ti-6Al-4V substrates, requiring simpler facilities and lower production costs than
ADLC deposition processes. TiN offers excellent corrosion resistance, favorable wear prop-
erties, strong coating adhesion, and consistent thickness control, making it an attractive and
scalable alternative for veterinary implants [23-27].

Despite these advantages, veterinary-specific standards for evaluating implant coatings are
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lacking, and most devices are still assessed using benchmarks designed for human orthopedic
systems. International Organization for Standardization (ISO) standards for implant materials,
biocompatibility, and wear testing provide useful guidance, but their direct application to the
unique biomechanical environment of quadrupedal locomotion remains challenging [28]. Fur-
thermore, few comparative studies have investigated how surface coating materials influence
the clinical feasibility and long-term safety of PGR systems in companion animals.

Based on these limitations, we evaluated a newly developed TiN-coated PGR system as a
practical and cost-effective alternative to an existing ADLC-coated device. Comprehensive
physicochemical, in vitro, and in vivo evaluations were conducted to verify the biological per-
formance, mechanical reliability, and manufacturing advantages of the TiN-coated system for

veterinary orthopedic applications.

MATERIALS AND METHODS

Implant materials

Two PGR systems were evaluated: a TiN-coated prototype (Doiff, Suncheon, Korea) and a
clinically available ADLC-coated predicate device (KYON, Ziirich, Switzerland; Fig. 1). Both
systems consisted of a femoral base plate and an artificial trochlear groove component secured
with orthopedic screws (Doiff) and were sterilized with ethylene oxide prior to implantation.

The TiN-coated prototypes were fabricated from Ti-6Al-4V alloy using an injection-mold-
ing route followed by arc ion plating. After molding, the substrates underwent sequential ultra-
sonic cleaning in acetone and ethanol for 10 min each and were vacuum-dried before coating.
The components were then placed in an arc ion plating chamber and degassed to 3.0 x 10°°
torr. For surface activation, high-purity argon was introduced to a working pressure of 10-20
mTorr, and a 900 W plasma was applied for 10 min to remove residual surface contaminants
through ion bombardment. Following evacuation, nitrogen gas was introduced under the same
pressure range, and TiN deposition was performed using a cathodic arc source operated at an
arc current of 60-80 A. During coating, the substrate temperature was maintained at 250°C—
350°C, and the deposition time (typically 40—60 min) was adjusted to achieve uniform film

growth. These coating conditions consistently produced TiN layers with strong adhesion and

Fig. 1. Representative images of the patellar groove replacement (PGR) systems. (A) Amorphous

diamond-like carbon (ADLC)-coated predicate device showing a black trochlear groove surface. (B) Titanium
nitride (TiN)-coated prototype with a golden surface finish.
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uniform thickness (1.69—1.73 um) while requiring substantially simpler equipment and lower
processing temperatures compared with the CNC machining and high-vacuum plasma deposi-

tion used for ADLC coating.

Physicochemical property tests

Physicochemical characterization included neutral salt spray, surface hardness, surface
roughness, and coating thickness measurements. The neutral salt spray test was performed
according to Korean Industrial Standards (KS) D 9502:2020 for 96 hr at 35 + 2°C using a 5%
NaCl solution.

Surface hardness was measured with a nano-indentation tester (NHT2, Anton Paar, Graz,
Austria) equipped with a Berkovich indenter, following ISO 14577-4:2016. Each material was
tested five times under identical conditions (maximum load: 50 mN; approach speed: 2,000
nm/min; dwell time: 5 s; loading/unloading rate: 100 mN/min). Surface roughness (Ra, Rz)
was measured with a contact profilometer (SJ-210, Mitutoyo, Kawasaki, Japan) in accordance
with KS B ISO 4287:2014.

Coating thickness was determined using a ball cratering test (Calotest Compact, CSM Instru-
ments, Peseux, Switzerland) based on KS T 0051:1999. All measurements were performed in quin-

tuplicate (n =5 per group). One-way ANOVA was used for statistical analysis ( p<0.05).

In vitro implant evaluation
Cytotoxicity test

Cytotoxicity was assessed according to ISO 10993-5 using the MTT assay in L-929 mouse
fibroblasts (KCLB, Seoul, Korea). Five experimental groups were prepared: control, negative
control, positive control, ADLC-coated, and TiN-coated. Extracts were prepared in minimum
essential medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and applied to cells
in 96-well plates. After 24-hr incubation, optical density (OD) was measured at 570 nm using
a microplate reader (SpectraMax i3x, Molecular Devices, San Jose, CA, USA). Cell viability

(%) was calculated using the following formula:

OD570e
M

Cell viability (%) = 100 x ————

Values below 70% were considered cytotoxic. One-way ANOVA was used for statistical
analysis (" p<0.01, " p<0.001).

Cell activity test

Cell adhesion and proliferation were assessed using discs prepared from stainless steel (con-
trol), uncoated Ti-6Al-4V, and TiN-coated Ti-6Al-4V. Discs (15-mm diameter, 1-mm thick-
ness) were placed in 24-well plates, and L-929 cells were seeded at a density of 2 x 10* cells/
well. After incubation for 4 hr or 24 hr, viable cells were quantified using a hemocytometer

under an inverted microscope (CKX53, Olympus, Tokyo, Japan).
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In vivo inflammatory response test in rats
Animals

All animal procedures were approved by the Institutional Animal Care and Use Committee
(TACUC) of Chonnam National University (Approval No. CNU IACUC-YB-2022-32). Nine
7-week-old male Sprague—Dawley rats (190-230 g; Samtaco Bio Korea, Osan, Korea) were
housed in an Association for Assessment and Accreditation of Laboratory Animal Care (AAA-
LAC)-accredited facility under controlled temperature (23 + 2°C) and humidity (60 = 10%),
with a 12-hr light/dark cycle. Rats were provided with free access to water and standard chow

(Samyang Feed, Incheon, Korea).

Sample preparation and implantation

Disc-shaped samples (16.4 + 0.1-mm outer diameter, 1.5-mm inner diameter, 1.0-mm thick-
ness) were prepared in four types: untreated Ti-6Al-4V, etched Ti-6Al-4V, TiN-coated, and
ADLC-coated. Under general anesthesia (xylazine 10 mg/kg IM; tiletamine—zolazepam 30
mg/kg IM), a 2-cm dorsal midline incision was made, and one disc was implanted subcuta-
neously over the fascia in each rat. Wounds were closed with absorbable sutures (Surgisorb,

Samyang Biopharm, Seoul, Korea).

Sampling and cytokine analysis

At 4 weeks post-implantation, rats were anesthetized as described above, and 2 mL of blood
was collected via cardiac puncture into EDTA tubes. Plasma was obtained by centrifugation
(848 g, 20 min, 4°C; Hanil Micro 17R, Hanil Scientific, Daejeon, Korea) and stored at —20°C
until analysis. Plasma concentrations of interleukin (IL)-1f and IL-6 were quantified using
rat-specific ELISA kits (R&D Systems, Minneapolis, MN, USA).

In vivo preclinical studies in dogs
Animals

Two healthy male beagles (14—16 months, ~10 kg) were used in this preclinical evaluation,
which was approved by the IACUC of Chonnam National University (Approval No. CNU
IACUC-2023-03). Animals were housed in an AAALAC-accredited facility under controlled
environmental conditions (temperature 23 + 2°C, humidity 60 + 10%, 12-hr light/dark cycle)
with ad libitum access to filtered water and a commercial diet (Lotte-Nestlé Purina, Cheongju,

Korea).

Surgical planning and procedures

Preoperative implant sizing was based on radiographic measurements, and surgical planning
was performed using veterinary orthopedic software (ver. 2.8.2, VETSOS Education, London,
UK).

To enable comparative evaluation, Dog 1 received a TiN-coated prototype in the right sti-
fle and a clinically available ADLC-coated device in the left stifle. Dog 2 received bilateral
TiN-coated implants, and a tibial plateau leveling osteotomy (TPLO) was additionally per-
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formed on the left stifle to simulate complex orthopedic conditions.

Premedication included glycopyrrolate (0.005 mg/kg, subcutaneously [SC]; Reyon, Seoul,
Korea), famotidine (0.5 mg/kg, intravenously [IV]; Dong-A ST, Seoul, Korea), cefazolin (20
mg/kg, IV; Hankook Korus Pharm, Seoul, Korea), and medetomidine (0.01 mg/kg, intramus-
cularly; Provet, Victoria, Australia). Analgesia was provided with carprofen (2.2 mg/kg, SC;
Zoetis, Parsippany, NJ, USA), tramadol (5 mg/kg, [V; Huons, Seongnam, Korea), and contin-
uous ketamine infusion (10 pg/kg/min; Yuhan, Seoul, Korea). General anesthesia was induced
with alfaxalone (1.5 mg/kg, IV; Zoetis) and maintained with isoflurane (2%—3%; Baxter,
Deerfield, IL, USA).

Dogs were positioned in dorsal recumbency. Both hindlimbs were shaved and disinfected
with 10% povidone-iodine and 70% ethanol. A longitudinal skin incision was made on the
cranial aspect of the stifle joint. After joint exposure, two Kirschner wires were inserted ap-
proximately 2 mm below the trochlear groove to guide osteotomy using an oscillating saw
(DePuy Synthes, Raynham, MA, USA). The native trochlear groove was resected with cau-
tion to avoid injury to the extensor digitorum longus muscle.

The femoral base plate of the PGR system was implanted into the prepared femoral surface,
followed by fixation of the artificial patellar groove component to the base plate with ortho-
pedic screws (Fig. 2). In the left hindlimb of Dog 2, TPLO was performed as pre-planned; the
proximal tibia was rotated to achieve the desired tibial plateau angle and stabilized using a
TPLO plate (Orthomed, Huddersfield, UK).

Postoperative care and follow-up evaluations

Postoperative medications were administered for 7 days and included famotidine (1 mg/kg
PO; Dong-A ST), enrofloxacin (5 mg/kg per os [PO]; Bayer, Leverkusen, Germany), carpro-
fen (4.4 mg/kg PO; Zoetis), gabapentin (10 mg/kg PO; Viatris, Canonsburg, PA, USA), and
tramadol (10 mg/kg PO; Yuhan).

Clinical evaluations were performed at 1, 2, 4, and 8 weeks postoperatively. Lameness was

Fig. 2. Surgical procedure for implantation of the PGR system in the canine stifle joint. (A) Exposure
of the patellar groove. (B) Placement of two Kirschner wires 2 mm below the groove to guide osteotomy. (C)
Removal of the native trochlear groove using an oscillating saw. (D) Positioning of the base plate and temporary
fixation with 26G syringe needles. (E) Final fixation with cortical screws. (F) Locking of the artificial patellar
groove onto the base plate. PGR, patellar groove replacement.
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graded on a 04 scale (0 = normal gait; 1 = mild, intermittent; 2 = persistent, moderate; 3 = se-
vere; 4 = non-weight-bearing) according to the criteria described by Dokic et al. [13]. Physical
examination at 4 and 8 weeks assessed crepitus, range of motion (ROM), joint effusion, pain,
and stifle stability.

Fluoroscopic images were obtained immediately after surgery, at 1, 2, 4, and 8 weeks, and
at 6 and 12 months using a flat-panel detector C-arm system (OSCAR Prime, GENORAY,
Seoul, Korea; 60 kVp, 1.6 mA, pulse mode 8 frames/s). Computed tomography (CT) scans
were performed at 8 weeks, 6 months, and 1 year under general anesthesia (Incisive CT,
Philips, Amsterdam, Netherlands; 140 kVp, 100 mAs). At 1 year, magnetic resonance imag-
ing (MRI; 3.0 T, Achieva, Philips Healthcare, Best, The Netherlands) was performed using a
T2-weighted fast spin-echo sequence (TR 3,000 ms; TE 100 ms; slice thickness 3.0 mm) with

a dedicated stifle coil to evaluate patellofemoral alignment and periarticular soft tissues.

Micro-computed tomography analysis

At the 1-year observation period, both dogs were humanely euthanized by intravenous
administration of potassium chloride (KC1-40, Dai Han Pharm, Seoul, Korea) under deep
anesthesia. The distal femurs containing the implants were harvested for micro-CT analysis
(SkyScan 1273, Bruker, Kontich, Belgium) performed at 100 kV, 40 pA, and 0.5° rotation
steps using an Al + Cu filter (1 mm + 0.038 mm). Images were reconstructed using NRecon
software (Bruker) to assess bone—implant integration, peri-implant bone formation, and poten-

tial osteolytic changes.

RESULTS

Physicochemical property tests

The results of physicochemical characterization are summarized in Table 1. In the neutral
salt spray test, both ADLC- and TiN-coated samples exhibited excellent corrosion resistance,
showing no signs of surface oxidation or discoloration after 96 hours of exposure.

In hardness testing, ADLC-coated samples demonstrated an average indentation hardness
(HIT) 0f 29.15 + 0.96 GPa and Vickers hardness (HVIT) of 2,700 + 85 HV, whereas TiN-coat-
ed samples exhibited significantly higher values (HIT: 32.07 + 0.84 GPa, HVIT: 2,970 + 92
HV, " p<0.05).

Table 1. Data from physicochemical tests of implant materials

- Neutral salt . Surface Coating
Coating type spray test Indentation hardness (GPa) roughness test (umRa) thickness test (um)
ADLC-coated Negative
implant (no corrosion) 29.15+0.96 0.10 £ 0.01 1.56 + 0.03
TiN-coated Negative . .
implant (no corrosion) 32.07 +0.84 0.09 +0.01 1.71+£0.02

Indicates a statistically significant difference compared with ADLC-coated implants ( p<0.05). Both coatings exhibited excellent corrosion resistance. TiN-coated implants showed
greater hardness and coating thickness. The surface roughness of the two coatings was comparable.

"Values are presented as the mean + S.D. (n=5).

ADLC, amorphous diamond-like carbon; TiN, titanium nitride.
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The surface roughness characteristics of the two coatings were comparable, with each
showing different strengths. While the TiN-coated implants exhibited a slightly lower average
roughness (Ra = 0.09 = 0.01 um vs. 0.10 = 0.01 um), the ADLC-coated implants showed a
lower maximum roughness height (Rz = 1.05 + 0.04 um vs. 1.36 + 0.06 um), indicating few-
er extreme peaks and valleys. Coating thickness ranged from 1.53—1.59 pm for ADLC and
1.69—1.73 pm for TiN, with the TiN group exhibiting a significantly thicker and more uniform
layer (" p<0.05).

Collectively, these findings indicate that both coatings possess robust physicochemical
stability, while TiN coatings provide superior hardness and coating integrity, supporting their

mechanical reliability and potential for mass production.

In vitro evaluation of implants
Cytotoxicity test

Negative control extracts yielded a mean cell viability of 75.34 + 2.1%, while positive con-
trol extracts produced a clear dose-dependent cytotoxicity (< 70%), confirming test validity.
Both ADLC- and TiN-coated samples maintained cell viability above 90% across all con-
centrations, indicating the absence of cytotoxic effects. TiN-coated extracts showed slightly
higher cell viability (up to 113.6 + 2.8%) than those from ADLC-coated samples (up to 110.9
+ 3.2%), although the difference was not statistically significant (Figs. 3 and 4). These results
confirm that neither coating induces cytotoxicity, and TiN exhibits excellent cellular compati-
bility comparable to ADLC.

Cell adhesion and proliferation

At 4 hours, cell adhesion was lower on TiN-coated surfaces (1.5 + 0.1 x 10° cells) compared with
uncoated Ti-6A1-4V surfaces (2.5 + 0.2 x 10° cells) and stainless steel control surfaces (7.5 £ 0.4 x
10° cells). However, at 24 hours, no difference in proliferation was observed between TiN-coated
and uncoated samples (= 2.0 x 10° cells). These findings suggest that TiN’s dense, low-energy
surface initially limits adhesion but does not inhibit subsequent cell proliferation, supporting its suit-

ability for long-term implant-tissue contact.

In vivo inflammatory response in rats

The untreated control group exhibited plasma IL-1p and IL-6 levels of 3.79 £+ 0.22 pg/mL
and 4.12 + 0.25 pg/mL, respectively. The ADLC-coated group showed slightly lower levels
(IL-1B: 2.72 + 0.18 pg/mL; IL-6: 2.58 + 0.16 pg/mL), while TiN-coated samples exhibited
comparable results (IL-1B: 3.72 + 0.20 pg/mL; IL-6: 3.32 + 0.19 pg/mL). No statistically
significant differences were observed between groups (p>0.05), indicating that both coatings
elicited minimal systemic inflammatory responses.

Overall, the TiN coating demonstrated comparable in vivo biocompatibility to ADLC, with-

out evidence of pro-inflammatory cytokine activation.
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Fig. 3. Representative L-929 cell morphology during the cytotoxicity test of coated materials (x 200). (A) Cells after exposure to material extracts. (B)
Cells following MTT treatment. No visible differences were observed between the ADLC- and TiN-coated sample groups. NC, negative control; PC, positive
control; ADLC, amorphous diamond-like carbon group; TiN, titanium nitride group.

https://doi.org/10.12729/jbtr.2025.26.4.107
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Fig. 4. Cell viability of L-929 fibroblasts in the MTT cytotoxicity test. Both ADLC and TiN coatings maintained cell
viabilities above 80% at all extract concentrations, indicating no cytotoxic potential. Data are expressed as the mean +
S.E. (n = 5). Statistical analysis was performed using one-way ANOVA. ~ p<0.01, " p<0.001 vs. control. Con, control;
NC, negative control; PC, positive control; ADLC, amorphous diamond-like carbon; TiN, titanium nitride.

In vivo preclinical study in dogs
Gait analysis
Both dogs exhibited transient postoperative lameness that improved progressively and re-

solved within 4 weeks.
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* Dog 1: Grade 2 lameness at week 1 — Grade 1 at week 2 — Normal gait by week 4.
* Dog 2: Grade 2 lameness at week 1 — Grade 1 by week 4 — Full recovery by week 8.
This rapid recovery suggests favorable joint adaptation and implant stability.

Physical examination

At 4 weeks, Dog 1 exhibited normal joint function without crepitus (ROM: 170°/47° right,
168°/45° left), while Dog 2 showed transient bilateral crepitus (171°/48° and 171°/46°). By 8
weeks, both dogs demonstrated near-normal ROM with no effusion, pain, or instability. These
findings indicate that both TiN- and ADLC-coated implants supported physiological joint mo-

tion without eliciting mechanical irritation.

Radiologic and imaging evaluations

Fluoroscopic images obtained immediately after implantation revealed minor gaps at the
bone—implant interface, which resolved by week 8, confirming stable fixation. At 6 months and
1 year, no implant loosening, bone resorption, or pathological changes were detected (Fig. 5). CT
and MRI analyses at 8 weeks, 6 months, and 1 year confirmed proper patellofemoral alignment
and smooth articulation between the artificial groove and patella. MRI at 1 year demonstrated
intact quadriceps and patellar tendons, no joint effusion, and no abnormal synovial proliferation
(Fig. 6). These imaging findings verify long-term implant stability, accurate alignment, and

soft-tissue compatibility.

Dog 1 Dog 2

TiN-coated ADLC-coated TiN-coated TiN-coated + TPLO

1 day
post-op

1 year
post-op

Fig. 5. Serial fluoroscopic images of canine stifle joints obtained 1 day (A-D) and 1 year (E-H) after PGR implantation. (A, E) TiN-coated implant (Dog 1,
right stifle), (B, F) ADLC-coated implant (Dog 1, left stifle), (C, G) TiN-coated implant (Dog 2, right stifle), (D, H) TiN-coated implant combined with TPLO (Dog 2,
left stifle). All implants remained well positioned without loosening, migration, or peri-implant abnormalities throughout the follow-up period. TiN, titanium nitride;
ADLC, amorphous diamond-like carbon; TPLO, tibial plateau leveling osteotomy; PGR, patellar groove replacement.
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Dog 1 Dog 2

TiN-coated ADLC-coated TiN-coated TiN-coated + TPLO

CT

MRI

Fig. 6. Computed tomography (CT) and magnetic resonance imaging (MRI) of stifle joints 1 year after implantation. (A-D) Sagittal CT reconstructions,
selected because this plane optimally demonstrates patellofemoral alignment and screw/pin tracts for loosening assessment: (A) TiN (Dog 1, right), (B) ADLC
(Dog 1, left), (C) TiN (Dog 2, right), (D) TiN + TPLO (Dog 2, left). (E-H) Sagittal T2-weighted fast spin-echo MRI (TR 3,000 ms; TE 100 ms; slice 3.0 mm)
obtained with a dedicated stifle coil to evaluate joint capsule and periarticular soft tissues: (E) TiN (Dog 1, right), (F) ADLC (Dog 1, left), (G) TiN (Dog 2, right),
(H) TiN + TPLO (Dog 2, left). Soft-tissue structures were normal in all MRI panels. TiN, titanium nitride; ADLC, amorphous diamond-like carbon; TPLO, tibial
plateau leveling osteotomy.

Micro-computed tomography assessment

Postmortem micro-CT evaluation at 1 year demonstrated well-developed peri-implant
trabecular bone and intimate bone—implant contact in both coating groups. No evidence of
osteolysis, fibrous encapsulation, or interfacial gaps was observed (Fig. 7). Bone volume and

density around TiN-coated implants were comparable to those of ADLC, confirming excellent

Dog 1 Dog 2
TiN-coated ADLC-coated TiN-coated TiN-coated + TPLO
B _ D

Metal
view

Fig. 7. Sagittal micro-CT evaluation 1 year after PGR implantation. (A-D) 3D sagittal reconstructions showing overall implant positioning: (A) TiN (Dog 1, right), (B)
ADLC (Dog 1, left), (C) TiN (Dog 2, right), (D) TiN + TPLO (Dog 2, left). (E-H) Metal-enhanced sagittal views highlighting the bone—implant interface and fixation quality
for the same sequence of implants. Across all panels, both coatings demonstrate intimate bone—implant contact without radiolucency, osteolysis, or interfacial gaps,
with satisfactory peri-implant trabecular bone formation. TiN, titanium nitride; ADLC, amorphous diamond-like carbon; TPLO, tibial plateau leveling osteotomy; CT,
computed tomography; PGR, patellar groove replacement.
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osteointegration and mechanical stability.

DISCUSSION

PGR has recently emerged as a salvage option for managing advanced MPL, especially in
dogs with severe femoropatellar osteoarthritis or those unresponsive to conventional tech-
niques. Traditional surgical procedures, such as trochleoplasty or tibial tuberosity transposi-
tion, are generally effective for low-grade MPL but are often inadequate for advanced cases
associated with angular deformities or chronic degenerative changes. In such situations, PGR
provides a prosthetic trochlear groove that restores patellar tracking along a biomechanically
stable pathway, thereby reducing pain and preserving joint mobility [11-15].

The TiN-coated PGR system developed in this study was not intended to surpass the AD-
LC-coated predicate device in all aspects but to achieve comparable biological and mechan-
ical performance while offering practical advantages in manufacturability, coating adhesion,
and production cost. Unlike the CNC machining and multi-step PACVD processes required
for ADLC coating—which typically involve adhesion interlayers and hydrocarbon gas acti-
vation—the TiN-coated prototypes were fabricated using injection molding followed by arc
ion plating performed at approximately 300°C-350°C and 0.1-0.2 Pa in a single-stage depo-
sition cycle. Previous comparative studies have also shown that TiN coatings exhibit higher
scratch-adhesion strength (L¢3 = 16.5 N) than DLC coatings (Lc3 = 10.6 N), suggesting more
robust coating stability under simpler processing conditions [29]. These quantitative differenc-
es support the scalability and cost-efficiency of TiN manufacturing, enabling potential transi-
tion of PGR systems from specialized applications to broader clinical use.

Physicochemical evaluation confirmed that both coatings provided high corrosion resistance
and surface integrity. However, TiN demonstrated greater hardness and thicker, more uniform
coating layers, indicating enhanced wear resistance and coating stability, which is consistent
with previous reports describing the strong correlation between coating hardness, structural
uniformity, and abrasion resistance in nitride-based hard coatings [30]. The surface roughness
profiles were comparable, though distinct. The lower average roughness (Ra) of the TiN coat-
ing is advantageous for reducing overall friction, while the lower maximum roughness height
(Rz) of the ADLC surface suggests a more uniform topography with fewer potential initiation
sites for wear. These interpretations are supported by studies showing that increased Ra or Rz
values elevate asperity-induced stress concentration and promote earlier fatigue crack initia-
tion under cyclic loading [31].

Biological assessments further verified that both coatings were non-cytotoxic and biocompat-
ible, with TiN showing slightly higher cell viability and no inhibition of cell proliferation. The
transient reduction in cell adhesion on TiN surfaces likely reflects the coating’s low surface ener-
gy rather than any cytotoxicity, aligning with previous findings in orthopedic and dental applica-
tions [23-25]. In vivo studies in rats confirmed the absence of significant systemic inflammatory
cytokine responses (IL-1p and IL-6), supporting the systemic safety of both materials. It should

be noted that only systemic cytokines were evaluated in this feasibility study; local tissue-level
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inflammatory responses—typically assessed using markers such as TNF-o, macrophage infiltra-
tion, or periprosthetic histology—were not measured and will be incorporated in future studies to
provide a more comprehensive assessment of local biomaterial reactivity.

Preclinical evaluation in beagles demonstrated successful implantation, stable fixation, and
restoration of normal gait within weeks postoperatively. Radiographic and advanced imaging
analyses (CT, MRI, and micro-CT) confirmed proper patellofemoral alignment, satisfactory
bone—-implant integration, and intact surrounding soft tissues without pathological findings.
These findings are consistent with recent imaging-based methods for evaluating bone—implant
integration [32—34]. Although clinical lameness grading and multimodal imaging were suffi-
cient for confirming functional recovery in this feasibility study, objective gait analysis such
as quantitative weight-bearing assessment was not performed; incorporating kinetic measure-
ments will strengthen future evaluations. In Dog 2, TiN-coated implants were intentionally
combined with TPLO to evaluate performance under a more complex surgical condition. Al-
though an ADLC+TPLO group would have provided an additional comparator, ADLC-coated
implants are already clinically established with well-documented safety, and the present study
prioritized assessing the newer TiN system under both standard and combined procedures.
Collectively, these results indicate that the TiN-coated PGR system shows clinical outcomes
comparable to those of the ADLC-coated device while offering manufacturing and cost advan-
tages that may enhance accessibility for general veterinary practice.

From a clinical and industrial standpoint, the TiN-coated PGR system represents a practical
alternative for treating severe MPL and other femoropatellar disorders. The cost-efficiency and
scalability of the injection molding and arc ion plating processes can significantly reduce manu-
facturing expenses and enable customized or mass-produced implants for a wider range of com-
panion animal patients. This improvement could help transition PGR procedures from a niche,
high-cost solution to a standardized and economically viable therapy in veterinary orthopedics.

However, this study has several limitations, including the small number of animals and a
relatively short follow-up period. While early outcomes were favorable, long-term studies
evaluating wear resistance, coating delamination, and fatigue performance are necessary to
validate durability under prolonged biomechanical stress. Additionally, because postoperative
assessments relied on fluoroscopic imaging rather than static digital radiography, geometric
accuracy was reduced, motion-related distortion was possible, and bone density measurements
could not be reliably obtained, which should be considered when interpreting peri-implant
features. Comparative analyses with other advanced coatings such as hydroxyapatite, porous
titanium, or hybrid multilayer films may further elucidate optimization strategies for future
implant systems. Ultimately, randomized controlled clinical trials in dogs with naturally occur-
ring MPL will be essential to confirm the translational relevance and establish clinical guide-

lines for TiN-coated PGR use in veterinary practice.

Conclusion
This study comprehensively evaluated TiN- and ADLC-coated PGR systems to identify an

optimal surface coating for veterinary orthopedic applications. Both coatings exhibited ex-
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cellent physicochemical stability, corrosion resistance, and biocompatibility, confirming their
suitability for long-term implantation.

The TiN-coated system demonstrated greater hardness, thicker and more uniform coating
layers, and comparable biological safety to the ADLC-coated device. Importantly, the TiN
coating can be produced through injection molding combined with arc ion plating, which re-
quires simpler equipment, lower processing temperatures, and reduced manufacturing costs
compared with the CNC machining and vacuum deposition methods used for ADLC.

Preclinical implantation in beagles confirmed that the TiN-coated PGR system provided
stable fixation, satisfactory patellar alignment, preserved joint motion, and excellent bone—
implant integration without adverse tissue reactions.

Collectively, these results indicate that TiN-coated PGR systems achieve equivalent bio-
logical and mechanical performance to those of ADLC-coated devices while offering distinct
advantages in manufacturability, cost-efficiency, and clinical scalability. TiN surface coating
thus represents a promising, practical, and economically viable solution for next-generation
veterinary orthopedic implants and may facilitate the broader clinical adoption of PGR proce-
dures in managing severe MPL.

Future work should include long-term durability testing, fatigue and wear analyses, and con-
trolled clinical trials in dogs with naturally occurring MPL to further validate the translational

and commercial potential of TiN-coated PGR implants.
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