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Abstract
The success of artificial insemination (AI) in the swine industry relies on conserving the qual-
ity of boar sperm during liquid storage, as boar spermatozoa are prone to oxidative stress 
due to the high polyunsaturated fatty acid content and lack of antioxidant defenses. Sperm 
motility, viability, acrosome integrity, and DNA stability are all affected by the increases in 
reactive oxygen species (ROS) during storage, which lowers fertility. Ethyl pyruvate (EP), a 
stable derivative of pyruvate, has good antioxidant properties and has been shown to protect 
sperm quality in vivo. Its effects on boar sperm during in vitro preservation have not yet been 
investigated. This study investigated the effect of different concentrations of EP (0.1–1 mM) 
in Beltsville thawing solution at 17°C on the sperm quality parameters of boar spermatozoa 
over five days. Changes in sperm motility, viability, acrosome integrity, chromatin stability, and 
ROS were observed. The results showed that boar spermatozoa stored with 0.25–0.75 mM 
EP showed a significant increase in sperm motility, viability, acrosome integrity, and chroma-
tin stability compared with the control (without EP) and 1 mM EP for 5 days. Compared to the 
control and 1 mM EP, ROS levels statistically decreased in sperm stored in 0.25–0.75 mM 
EP on both storage days 3 and 5. Our findings demonstrated that 0.25–0.75 mM of EP could 
enhance the boar sperm quality and mitigate the oxidative stress during liquid storage, thus 
revealing a strategy to improve fertility rates during AI in pig production. 
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INTRODUCTION

Artificial insemination (AI) is a widely used technique for animal reproduction in the livestock 
industry. Researchers are focusing on developing innovative methods for liquid preservation to 
enhance sperm quality [1]. Studies have shown that motility, viability, acrosome integrity, chroma-
tin stability, and levels of reactive oxygen species (ROS) are the primary parameters essential for 
maintaining sperm quality and fertilization ability [2]. During storage, metabolic pathways in the 
spermatozoa result in the production of byproducts including ROS, superoxide anion, and hydro-
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gen peroxide [3]. The excessive generation of byproducts in an in vitro environment decreases 
sperm quality and affects fertilization [4]. Therefore, it is crucial to include relevant substances 
in semen extenders to mitigate the negative impact of these byproducts [5]. Importantly, these 
substances should be capable of maintaining energy production and redox potential to ensure 
sperm quality [6].

The addition of antioxidants to semen extenders is a common approach used to maintain the 
boar sperm quality during prolonged storage [7, 8]. Antioxidants, including fish oil, vitamin E, 
organic selenium, and ginseng extract, have been proven to enhance antioxidant activity and 
maintain the quality of boar spermatozoa during storage [9–13]. Pyruvate is a natural substance 
produced as the final product of glycolysis. However, it is unstable in an aqueous solution. To 
resolve this issue, ethyl pyruvate (EP) was synthesized as a stable derivative of pyruvate [14, 
15]. Research studies have shown that EP provides biological and pharmacological benefits, 
including antioxidant and anti-inflammatory effects, in both in vivo and in vitro research models 
[14, 16]. EP is associated with energy metabolism in cells, during which ROS are produced. 
Overproduction of ROS can damage cellular components, like DNA. EP has the ability to re-
move or neutralize the excess ROS [16–18]. In one study, EP was administered to mice with 
phenylhydrazine (PHZ)-induced hemolytic anemia and the sperm quality parameters were ex-
amined in comparison to the PHZ-only treated group [19]. The EP-treated group showed high-
er sperm motility, viability, and improved sperm morphology compared to the PHZ-induced 
hemolytic anemia group. These effects were attributed to the free radical scavenging ability of 
EP [19]. Similarly, administration of EP to cyclophosphamide-induced oxidative stress mice 
significantly increased sperm count, motility, viability, and normal morphology, and reduced 
DNA damage compared with the cyclophosphamide-only treated group [11]. 

Research studies have investigated the effect of EP on the sperm quality parameters of ani-
mals in vivo. However, no studies have been conducted to assess its effects on boar spermato-
zoa in vitro. Therefore, there is a research gap with respect to the effect of EP on boar sperma-
tozoa during sperm preservation. The current study investigated the effect of EP on the quality 
parameters of boar spermatozoa during storage.  

MATERIALS AND METHODS

Preparation and storage of boar semen
Freshly collected boar semen samples from adult Duroc boars with sperm motility exceed-

ing 80% were purchased from the local AI center. Boar sperm was washed and extended in 
Beltsville thawing solution (BTS), supplemented with different concentrations of EP (0.1, 0.25, 
0.5, 0.75, 1 mM), or placed in a control group (without EP). EP concentrations in the range 
of 0.1 to 1 mM were selected based on preliminary experiments using boar sperm to evaluate 
their effects on sperm quality during storage. The samples were subjected to storage at 17℃ 
for 5 days. 
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Measurement of sperm motility 
Sperm motility parameters were evaluated using a computer-assisted sperm analyzer (CASA, 

Sperm Class Analyzer, Microptic S.L., Barcelona, Spain). Before measuring the sperm motil-
ity, the Leja chamber slide was pre-warmed at 37℃. Subsequently, a 2 µL sample was placed 
into chamber slides (Leja Products B.V., Nieuw-Vennep, The Netherlands) and ten optical 
fields were analyzed, encompassing a total of not less than 500 spermatozoa. The CASA sys-
tem assessed the following as motion kinetic parameters: progressive motility, linearity index, 
straightness index, curvilinear velocity, straight-line velocity, oscillation index, and average 
path velocity. 

Sperm viability
Spermatozoa were rinsed twice in phosphate-buffered saline (PBS) containing 0.1% (w/

v) polyvinyl alcohol (PBS-PVA). Viability was determined by employing the sperm viability 
kit (LIVE/DEAD®, Molecular Probes, Eugene, OR, USA). First, spermatozoa were centri-
fuged at room temperature (RT) for 5 min, and then the supernatant was removed. Following 
that, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer was added to the 
sperm pellet and incubated with the SYBR14 stain (100 nM) for 5 min. Propidium iodide (PI, 
10 μM) was added to the sample, and it was incubated for 5 min. The stained samples were 
mounted with a mounting medium and examined using a fluorescence microscope (Nikon, 
Tokyo, Japan), and images were captured (DS-Fi2, Nikon). Live sperm cells appeared green, 
while dead cells appeared red.

Acrosome integrity 
Spermatozoa were centrifuged twice with PBS at RT for 5 min each. After centrifugation, 

the spermatozoa were placed onto the slides. For cell fixation, the slides were incubated in 
95% ethanol at 4℃ for 30 min, after which the slides were allowed to air dry completely. For 
acrosome staining, fixed spermatozoa were incubated with fluorescein isothiocyanate-Pisum 
sativum agglutinin (FITC-PSA) at RT for 8–10 min. After incubation, the excess staining 
solution was removed, and the slides were subjected to three washes with PBS [20]. The sam-
ples were subsequently monitored under a fluorescence microscope coupled with an imaging 
system (Nikon Eclipse Ci microscope, Nikon). Spermatozoa exhibiting green fluorescence 
localized to the acrosome region were defined as intact acrosomes, while those lacking/absent 
green fluorescence were classified as acrosome-reacted or damaged.  

Chromatin stability
Spermatozoa were centrifuged twice with PBS at RT for 5 min each. After centrifugation, 

spermatozoa were placed onto the slides. To fix the cells, the slides were incubated with Car-
noy’s solution (methanol: glacial acetic acid = 3:1) for 15 min at 4℃ and then air dried. The 
fixed slides were then incubated in a tampon solution (80 mM citric acid, 15 mM sodium 
hydrogen phosphate [Na2HPO4], pH 2.5) at 75℃ for 5 min. Once cooled to RT, the slides 
were incubated with acridine orange solution (0.2 mg/mL) for 5 min at RT. The excess stain 
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was gently tapped off, and the slides were subjected to two successive washes with distilled 
water [21]. The samples were then explored under a fluorescence microscope equipped with 
an imaging system (Nikon Eclipse Ci microscope, Nikon). Sperm emitting green fluorescence 
were classified as having normal chromatin integrity, while those showing yellow to red fluo-
rescence were considered to have denatured DNA. 

Reactive oxygen species
The spermatozoa were centrifuged twice with 0.1 PBS-PVA at RT for 5 min. The sperm pel-

let was then resuspended with 0.1 PBS-PVA solution and incubated with 1 µM 5-(and-6)-car-
boxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA, Invitrogen, Eugene, 
OR, USA) at 37℃ for 10 min. Following incubation, the spermatozoa were subjected to two 
washes with PBS and mounted on the slides [22]. ROS production was then examined under a 
fluorescence microscope (Nikon Eclipse Ci microscope, Nikon). 

Statistical analysis
Statistical analyses were performed using one-way ANOVA via the GraphPad PRISM® 

software (San Diego, CA, USA). Our study utilized a completely randomized design, and sig-
nificant differences between groups were assessed using Tukey’s multiple comparison test and 
the t-test. Data are represented as mean ± S.E.M. and statistical significance was set at * p<0.05, 
** p<0.01, and *** p<0.001.

RESULTS

Sperm motility increased in the presence of ethyl pyruvate during storage
Sperm motility of boar spermatozoa was measured over 5 days in liquid storage without EP 

(control) and with EP (0.1–1 mM). On day 1 of storage, no statistically significant differences 
in motility were detected among the EP groups compared to the control. However, on day 
3, a notable increase in motility was observed in the 0.5–0.75 mM EP groups compared to 
the control and 1 mM EP groups (79.6%–80.4% in the control vs. 84.5%–87.3% in 0.5–0.75 
mM EP, p<0.05 and p<0.001; Fig. 1). On day 5, the sperm stored with 0.25–0.75 mM EP also 
showed significantly higher motility compared to the control and 1 mM EP group (70.7%–70% 
vs. 76.7%–82.5%, p<0.01 and p<0.001; Fig. 1). Notably, the highest motility was detected 
in sperm stored with 0.5 mM EP on both days 3 and 5. Furthermore, the EP-exposed groups 
exhibited marked improvements in motion kinetic parameters, including progressive motility, 
linearity index, straightness index, curvilinear velocity, straight-line velocity, oscillation index, 
and average path velocity compared to the control group during storage (p<0.05, p<0.01 and 
p<0.001; Table 1).  

Ethyl pyruvate supplementation led to increased sperm viability during liquid storage
Sperm viability was evaluated throughout the liquid storage, and no pronounced differences 

were detected between the EP groups and control on day 1 (Fig. 2). After 3 days of storage, 
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Table 1. Effect of ethyl pyruvate (EP) on sperm motion kinematics on different storage days

 Ethyl pyruvate (mM) p-value2)

Storage 
(day)

Parameters1)

0 0.1 0.25 0.5 0.75 1 0 vs.
0.1 mM

0 vs.
0.25 mM

0 vs.
0.5 mM

0 vs.
0.75 mM

0 vs.
1 mM

1 PR (%) 80.5 ± 1.0 81.0 ± 2.6 81.8 ± 1.6 80.5 ± 0.2 82.2 ± 1.4 82.2 ± 0.5 0.999 0.992 0.999 0.977 0.976

LIN (%) 24.9 ± 0.8 26.1 ± 0.8 28.7 ± 1.5 27.0 ± 2.2 28.7 ± 1.5 27.2 ± 1.5 0.999 0.999 0.992 0.398 0.895

STR (%) 53.4 ± 1.4 54.0 ± 0.7 54.1 ± 2.1 53.9 ± 1.4 52.4 ± 2.6 53.3 ± 0.6 0.997 0.997 0.999 0.971 0.999

WOB (%) 53.0 ± 0.9 57.0 ± 3.4 54.8 ± 2.0 52.8 ± 2.3 54.5 ± 2.8 50.8 ± 1.6 0.327 0.933 0.999 0.959 0.857

VCL (µm/s) 74.1 ± 0.7 71.3 ± 2.6 68.8 ± 2.0 73.3 ± 1.3 76.9 ± 2.4 80.0 ± 2.8 0.615 0.066 0.997 0.593 0.532

VSL (µm/s) 13.4 ± 1.2 13.8 ± 2.5 13.9 ± 0.5 14.4 ± 2.5 14.0 ± 0.8 13.5 ± 2.1 0.999 0.998 0.977 0.997 0.998

VAP (µm/s) 29.1 ± 0.4 31.3 ± 1.4 26.9 ± 1.4 28.7 ± 0.9 28.0 ± 3.5 31.0 ± 1.5 0.900 0.995 0.999 0.995 0.925

3 PR (%) 63.2 ± 1.4 63.9 ± 2.3 69.9 ± 2.7 75.5 ± 0.5 69.9 ± 2.7 63.3 ± 1.4 0.999 0.055 0.000 0.050 0.999

LIN (%) 41.9 ± 1.5 38.5 ± 1.4 30.9 ± 0.5 33.1 ± 1.5 35.8 ± 0.5 37.3 ± 1.6 0.517 0.000 0.001 0.040 0.201

STR (%) 52.6 ± 2.8 56.3 ± 0.7 59.9 ± 0.7 63.9 ± 0.4 53.7 ± 0.7 50.1 ± 1.7 0.052 0.000 0.000 0.963 0.455

WOB (%) 65.9 ± 1.0 70.8 ± 0.3 56.1 ± 1.1 57.0 ± 1.2 60.97 ±2.5 63.8 ± 0.9 0.123 0.000 0.000 0.111 0.881

VCL (µm/s) 53.5 ± 1.3 59.0 ± 0.8 59.0 ± 0.6 68.1 ± 0.8 58.1 ± 1.1 50.7 ± 1.0 0.051 0.049 0.000 0.132 0.541

VSL (µm/s) 10.9 ± 0.5 12.0 ± 2.0 12.0 ± 0.8 14.1 ± 0.7 12.4 ± 1.6 9.2 ± 0.5 0.954 0.949 0.207 0.856 0.826

VAP (µm/s) 16.0 ± 0.7 14.2 ± 2.3 17.5 ± 1.5 21.7 ± 0.8 18.7 ± 0.2 15.6 ± 0.7 0.940 0.967 0.088 0.999 0.557

5 PR (%) 50.9 ± 0.9 53.9 ± 1.0 55.3 ± 1.2 61.0 ± 0.7 58.9 ± 0.7 52.2 ± 2.8 0.626 0.232 0.000 0.005 0.979

LIN (%) 33.0 ± 1.4 46.0 ± 1.4 47.6 ± 1.5 40.2 ± 0.5 41.6 ± 1.4 41.2 ± 2.0 0.000 0.000 0.001 0.001 0.003

STR (%) 60.6 ± 0.6 61.9 ± 0.8 63.3 ± 1.5 66.1 ± 0.7 59.4 ± 1.1 60.7 ± 0.7 0.915 0.371 0.008 0.952 0.999

WOB (%) 69.1 ± 0.4 67.5 ± 1.4 66.7 ± 1.1 58.8 ± 0.4 67.9 ± 2.1 69.7 ± 0.7 0.960 0.815 0.000 0.987 0.999

VCL (µm/s) 23.5 ± 1.5 25.1 ± 0.6 29.5 ± 1.3 30.5 ± 1.0 28.1 ± 0.8 26.2 ± 1.0 0.947 0.029 0.008 0.148 0.660

VSL (µm/s) 9.4 ± 0.7 10.8 ± 0.5 8.0 ± 0.7 13.1 ± 0.6 11.6 ± 1.4 7.1 ± 1.2 0.994 0.895 0.121 0.512 0.512

VAP (µm/s) 12.9 ± 0.5 10.1 ± 0.7 11.9 ± 0.9 17.2 ± 0.9 17.1 ± 2.2 15.6 ± 2.1 0.708 0.995 0.298 0.320 0.736
1) The experiments were conducted four times with four different boars. The results for sperm motility and motion kinematics are provided as mean ± S.E.M.
2)p-values represent the comparison between the control and EP-treated samples (0.1–1 mM).
PR, progressive sperm motility; LIN, linearity index; STR, straightness index; WOB, oscillation index; VCL, curvilinear velocity; VSL, straight line velocity; VAP, average path velocity.

Fig. 1. Sperm motility was examined at 17℃ for 5 days. Boar spermatozoa were stored in Beltsville thawing solution (BTS) with different concentrations 
(0.1–1 mM) of ethyl pyruvate (EP) or control without EP. The values are presented as mean ± S.E.M. * p<0.05, ** p<0.01, and *** p<0.001.
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viability was notably higher in sperm stored with 0.25-0.75 mM EP compared to both control 
and the 1 mM EP group (71.1%–73.8% in control vs. 77.5%–80.8% in 0.25–0.75 mM EP, 
p<0.01 and p<0.001; Fig. 2). Compared to the control, 0.5–0.75 mM EP had a significant-
ly higher effect on viability on day 5 (66.5% in control vs. 71.6%–73.5% in 0.5–0.75 mM 
EP, p<0.01 and p<0.001; Fig. 2). Consistent with the motility results, the 0.5 mM EP group 
showed the highest viability among all EP groups in both days 3 and 5. However, storage with 
0.1 and 1 mM did not significantly improve viability compared with the control on either day 
3 or 5 of liquid storage.

Acrosome integrity improved when stored with ethyl pyruvate  
On day 1, there was no notable difference in the percentages of sperm with intact acrosome 

among the treatment groups (Fig. 3). By day 3, sperm stored with 0.25–0.75 mM EP exhibited 
a significant increase in the percentage of intact acrosome relative to the control group (73.8% 
in control vs. 78.9%–81.3% in 0.25–0.75 mM EP, p<0.05 and p<0.001; Fig. 3). Likewise, on 
day 5, supplementation with 0.25–0.75 mM EP in the BTS solution significantly improved 
the percentage of intact acrosome (68.8% in control vs. 73.5%–76.8% in 0.25–0.75 mM EP, 

Fig. 3. Evaluation of acrosome integrity at 17℃ for 5 days. Boar spermatozoa were stored in Beltsville thawing solution (BTS) with different concentrations 
(0.1–1 mM) of ethyl pyruvate (EP) or control without EP. The values are presented as mean ± S.E.M. *p<0.05, **p<0.01, and ***p<0.001.

Fig. 2. Examination of sperm viability. Boar spermatozoa were stored in Beltsville thawing solution (BTS) with different concentrations (0.1–1 mM) of ethyl 
pyruvate (EP) or control without EP at 17℃ for 5 days of storage. The values are presented as mean ± S.E.M. * p<0.05, ** p<0.01, and *** p<0.001.
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p<0.05 and p<0.001; Fig. 3). 

Sperm DNA was conserved in Beltsville thawing solution with ethyl pyruvate 
during the storage

Chromatin stability was assessed over 5 days of storage. Consistent with the previous re-
sults, no differences were detected in the proportion of normal chromatin among the group on 
day 1 (Fig. 4). However, on day 3, sperm stored with 0.25–0.75 mM EP exhibited a signifi-
cantly higher proportion of normal chromatin (71.1% in control vs 77.9%–80.6% in 0.25–0.75 
mM EP, p<0.05, p<0.01 and p<0.001; Fig. 4). Sperm stored with 0.25–0.75 mM EP showed a 
statistically higher proportion of normal chromatin compared to the control and 1 mM groups 
on day 5 of storage (71.1%–73.8% in control and 1 mM vs. 77.5%–80.8% in 0.25–0.75 mM 
EP, p<0.01 and p<0.001; Fig. 4). Notably, sperm stored with 0.5 mM EP showed the highest 
proportion of normal chromatin on days 3 and 5 (p<0.001; Fig. 4). 

Reactive oxygen species was notably decreased in the presence of ethyl pyruvate 
during storage

A similar trend was observed in the ROS levels. On day 1, the ROS levels did not signifi-
cantly differ among the treatment groups (Fig. 4). The ROS levels were significantly lower 
in sperm treated with 0.25–0.75 mM EP compared to the control and 1 mM EP on day 3 of 
storage (fluorescent intensity; 27.9–28.5 in control and 1 mM vs. 17.8-21.9 in 0.25 mM EP, 
p<0.05, p<0.01 and p<0.001; Fig. 5). A similar trend was seen on day 5, in sperm stored with 
0.25–0.75 mM EP (27.9–28.5 in control and 1 mM vs. 17.8–21.9 in 0.25 mM EP, p<0.05, 
p<0.01 and p<0.001; Fig. 5). 

DISCUSSION

Boar spermatozoa are susceptible to oxidative stress due to the high levels of polyunsaturat-
ed fatty acids in their cell membranes and lower natural antioxidant defense capacity [23, 24]. 
As a result, boar spermatozoa are prone to reduced sperm motility, viability, and chromatin 

Fig. 4. Evaluation of chromatin stability in boar spermatozoa stored in Beltsville thawing solution (BTS) with different concentrations (0.1–1 mM) of 
ethyl pyruvate (EP) or control without EP at 17℃ for 5 days. The values are presented as mean ± S.E.M. *p<0.05, **p<0.01, and ***p<0.001.
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stability, along with increased ROS levels during liquid storage [25]. To reduce these effects, 
antioxidants are added to semen extenders to help maintain the quality of boar spermatozoa by 
decreasing excessive ROS production during liquid storage at 17℃ [26]. 

AI is widely used as a successful breeding method in boars and improves fertility, genetics, 
and production. Liquid preservation of boar semen is a crucial component of AI [27]. There-
fore, adding antioxidants to semen extenders is essential during storage to maintain sperm 
quality [28]. Research studies have used both synthetic and natural antioxidants, in vivo and 
in vitro, to improve boar sperm quality by reducing ROS production during storage [29]. Syn-
thetic antioxidants that have been used include α-tocopherol, butylated hydroxytoluene, tau-
rine, and selenium, while natural extracts such as rosmarinic acid, resveratrol, and Isatis root 
polysaccharide have also been tested [30]. 

EP is an ester formed by the condensation of pyruvic acid and can be used as a stable alter-
native to pyruvate. Researchers have demonstrated that EP has shown antioxidant potential 
in various cells and tissues, including the testicular tissue in mammals in in vivo studies [31]. 
Pyruvate is an essential component of the metabolic pathways in cells. It is the end product of 
anaerobic glycolysis and serves as the starting substrate for the tricarboxylic acid cycle [32]. 
Both in vitro [33] and in vivo [34] research studies have found that EP is involved in metabolic 
activities by increasing ATP production and reducing oxidative stress in cells without breaking 
down into pyruvate. 

Several in vivo studies have documented that EP has a protective effect on male reproductive 
functions. For example, EP administration to mice with cyclophosphamide-induced oxidative 
stress significantly improved epididymal sperm quality by enhancing sperm concentration, 
motility, viability, nucleus maturity, and chromatin stability, and led to lower ROS levels com-
pared to cyclophosphamide-induced mice without EP treatment [11]. Similar approach where 
methotrexate was administered to mice to induce testicular toxicity, followed by treatment 
with EP showed increased sperm count, motility, viability, sperm maturity, and chromatin sta-

Fig. 5. Levels of intracellular reactive oxygen species (ROS) were examined in boar spermatozoa stored in Beltsville thawing solution (BTS) with 
different concentrations (0.1–1 mM) of ethyl pyruvate (EP) or control without EP at 17℃ for 5 days. The values are presented as mean ± S.E.M. 
*p<0.05, **p<0.01, and ***p<0.001.
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bility compared to the mice treated only with methotrexate [35]. Also, mice with PHZ-induced 
hemolytic anemia were treated with EP and found to reduce the DNA damage in sperm [19]. 

In our study, we found that motility and chromatin stability were increased in boar sperma-
tozoa stored with 0.25–0.75 mM EP compared to the control group on both days 3 and 5 of the 
storage period. Additionally, our results showed that significantly lower levels of ROS were 
observed in boar spermatozoa stored at EP concentrations 0.25–0.75 mM during storage days 
3 and 5, indicating the antioxidant potential of EP in maintaining sperm quality during liquid 
storage. Our findings are consistent with previous studies in which EP reduced oxidative stress 
and improved sperm parameters in mammalian models with testicular toxicity [11, 35]. 

The improvement in sperm motility observed in our study may be in part due to the meta-
bolic role of pyruvate derivatives. A study using human spermatozoa incubated with exoge-
nous pyruvate and glucose reported elevated motility and capacitation during incubation. The 
authors revealed that the combined treatment promoted glycolysis, which contributed to the 
results [36]. 

Numerous studies have demonstrated that excessive levels of ROS trigger the peroxidation 
of polyunsaturated fatty acids, leading to the disruption of the normal morphology of sperm, 
damage to the sperm DNA, and reduction in motility and viability, which are associated with 
lower success rates seen in in vitro fertilization [11, 37, 38]. According to our findings, reduc-
ing oxidative stress is crucial for sperm preservation, and the inclusion of EP in semen extend-
ers can mitigate these negative effects. 

In conclusion, our findings indicate that EP is an effective antioxidant for improving the 
quality of boar sperm during liquid storage. To our knowledge, this is one of the first studies 
conducted to investigate the in vitro effects of EP on boar semen extenders under short-term 
storage conditions. Further research is needed to explore its effect during long-term storage 
and cryopreservation to evaluate its efficacy with other antioxidants for optimal extender for-
mulations. 
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