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Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy that leverages the 
natural protein degradation systems of cells to eliminate disease-associated proteins se-
lectively. Unlike traditional small molecule inhibitors, which merely suppress protein activity, 
TPD degrades target proteins directly, offering a novel approach to addressing undruggable 
proteins. The two most extensively studied TPD technologies, proteolysis-targeting chimeras 
(PROTACs) and molecular glues (MGs), utilize the ubiquitin–proteasome system to induce 
TPD. PROTACs function as bifunctional molecules that recruit an E3 ubiquitin ligase (E3 li-
gase) to a target protein, leading to its ubiquitination and subsequent degradation, while MGs 
enhance protein–protein interactions to facilitate ubiquitination and protein clearance. These 
approaches have shown promising therapeutic potential in treating cancer, neurodegenera-
tive disorders, and autoimmune diseases, with several compounds currently undergoing clini-
cal trials. Despite these advances, challenges such as limited bioavailability, pharmacokinetic 
constraints, and target selectivity remain obstacles to the widespread application of TPD-
based therapies. Recent developments, including the discovery of novel E3 ligases, linker 
optimization, and AI-driven drug design, have addressed these limitations, paving the way for 
the next generation of precision-targeted therapeutics. This paper provides a comprehensive 
overview of the mechanisms, applications, and future directions of PROTACs and MGs in 
drug discovery, highlighting their potential to revolutionize modern targeted therapy.
Keywords: molecular targeted therapy; proteolysis-targeting chimeras (PROTACs); ubiquiti-
nation; proteolysis; ubiquitin-protein ligases 

INTRODUCTION

Continuous protein turnover occurs in the human body, wherein various proteins essential for 
physiological activities, such as hormones and enzymes, are synthesized while unnecessary pro-
teins are degraded. The normal protein metabolism requires a balance between protein synthesis 
and degradation to maintain cellular homeostasis [1]. Certain diseases, such as cancer and neu-
rodegenerative disorders, arise when specific proteins accumulate excessively or are improperly 
degraded, leading to pathological consequences [2]. Small molecule inhibitors (SMIs) have been 
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used widely as traditional therapeutic agents to address these issues. SMIs function by inhib-
iting the activity of target proteins, mitigating disease progression. These inhibitors typically 
bind to the active site or a specific binding pocket of the protein, suppressing its function [3]. 
On the other hand, more than 80% of proteins are classified as “undruggable” because of the 
lack of well-defined binding pockets or active sites, making them challenging targets for SMIs 
[4]. In addition, a sustained drug concentration must be maintained to ensure therapeutic ef-
ficacy because proteins are continuously synthesized. This requirement increases the risk of 
adverse effects and enhances the likelihood of off-target interactions, potentially leading to 
unintended biological consequences [5].

Recently, therapeutic strategies have attempted to overcome these limitations using intra-
cellular protein degradation systems to remove abnormal and misfolded proteins. The two 
major intracellular protein degradation pathways are the ubiquitin–proteasome system (UPS) 
and the autophagy–lysosome pathway [6]. The UPS functions by tagging target proteins 
for degradation through ubiquitination. This ubiquitin-tagged protein is then recognized by 
the proteasome, which then degrades it, ensuring selective protein turnover and maintaining 
cellular homeostasis [7]. The autophagy-lysosome pathway is a degradation mechanism that 
breaks down damaged organelles and protein aggregates, including large protein complexes. 
In this process, an autophagosome forms around the damaged proteins, encapsulating them 
within a double-membrane vesicle. The autophagosome then fuses with a lysosome, where 
hydrolytic enzymes degrade the enclosed proteins using ATP, ensuring cellular quality con-
trol and homeostasis [8]. The emerging therapeutic approach of targeted protein degradation 
(TPD), which leverages the intrinsic protein degradation systems of cells, enables the targeting 
of proteins that are traditionally considered undruggable by conventional SMIs. Unlike tran-
sient inhibition, TPD facilitates the complete removal of the target protein, offering sustained 
efficacy and potential for repeated therapeutic application [9, 10]. In particular, TPD can target 
proteins located in challenging cellular compartments, such as the extracellular matrix and cell 
membrane, and traditionally undruggable targets like transcription factors. This expands the 
scope of future research opportunities and therapeutic development [11]. Currently, various 
TPD technologies are being actively researched and developed, including proteolysis-targeting 
chimeras (PROTACs), molecular glues (MGs), autophagy-targeting chimeras (AUTOTACs), 
lysosome-targeting chimeras (LyTACs), and autophagy-tethering compounds (ATTECs). 
Among these, PROTACs and MGs have been studied extensively, with several molecules cur-
rently undergoing clinical trials [12]. This study focused on PROTACs and MGs, the two most 
significant approaches in the TPD field that leverage proteasome-mediated degradation. This 
review comprehensively explains their mechanisms, therapeutic applications, and prospects.

MECHANISM OF TARGETED PROTEIN DEGRADATION

A clear understanding of the ubiquitination process is essential for elucidating the mechanism 
of TPD based on the UPS. Ubiquitin is a small, evolutionarily conserved 76-amino acid protein 
found in all eukaryotic cells. Its final amino acid, glycine, forms a covalent bond with the lysine 
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residue of the target proteins, marking them for degradation through the UPS [13]. Ubiquitin 
undergoes a sequential enzymatic cascade involving three key enzymes to be conjugated to a tar-
get protein. First, the ubiquitin-activating enzyme (E1) activates ubiquitin in an ATP-dependent 
manner. The ubiquitin-conjugating enzyme (E2) then transfers the activated ubiquitin from E1 to 
either an E3 ubiquitin ligase (E3 ligase) or directly to the substrate protein. Finally, the E3 ligase 
recognizes and binds to the target protein, facilitating the transfer of ubiquitin from E2 to the 
lysine residue of the substrate. A polyubiquitin chain is formed through this process, marking the 
protein for degradation via the proteasome [14]. The ubiquitinated protein is directed to the 26S 
proteasome through this three-step process, where it undergoes degradation, ensuring proper pro-
tein turnover and cellular homeostasis [15]. The E3 ligase is crucial in recognizing and binding 
to specific substrate proteins, facilitating their ubiquitination. UPS-based TPD strategies leverage 
these enzymes to selectively degrade target proteins because of the diversity of E3 ligases, en-
abling precise and efficient protein elimination [6]. 

First introduced in 2001, PROTACs are heterobifunctional molecules composed of sepa-
rate ligands for the target protein and E3 ligase, connected by a chemical linker. This design 
enables the selective ubiquitination and subsequent degradation of the target protein via the 
UPS [16]. The target-binding ligand binds to the protein, while the E3 ligase ligand recruits an 
E3 ligase. Once the E3 ligase is recruited, it facilitates the ubiquitination of the target protein, 
marking it for proteasomal degradation via the UPS [17]. 

MGs are a class of small molecules that facilitate the interaction between the target protein and 
an E3 ligase, promoting ubiquitination and subsequent proteasomal degradation of the target pro-
tein [18, 19]. The immunomodulatory imide drug (IMiD) class, which is used as a first-line treat-
ment for multiple myeloma, is a representative example of MGs. IMiDs interact directly with 
the E3 ligase cereblon (CRBN), facilitating the recruitment of neo-substrates, such as the Ikaros 
(IKZF) family, leading to their ubiquitination and subsequent degradation [20]. The IKZF family 
consists of transcription factors traditionally considered undruggable by conventional therapies. 
Nevertheless, IMiDs induce their polyubiquitination and subsequent proteasomal degradation, 
eliminating these proteins through MGs-mediated mechanisms (Fig. 1) [21]. 

Although MGs stabilize specific protein–protein interactions (PPIs) through a single small 
molecule, PROTACs are heterobifunctional molecules that induce proteasomal degradation by 
simultaneously binding a target protein and an E3 ligase [22]. The main differences between 
PROTACs and MGs are summarized in Table 1. MGs generally have a low molecular weight, 
high cell membrane permeability, and favorable drug-like properties, making them well-suited 
for therapeutic applications. In contrast, PROTACs are larger molecules with complex physi-
cochemical properties that can limit their cellular uptake and metabolic stability, posing chal-
lenges for drug delivery and bioavailability [23]. The two approaches are complementary, and 
MGs are often used as ligands for E3 ligases in PROTAC design, enhancing the efficiency of 
TPD [24–26].

In recent years, the discovery of small-molecule ligands for E3 ligases has significantly 
advanced the understanding and application of PROTAC technology. Most small-molecule 
PROTACs use Von Hippel-Lindau (VHL) and CRBN E3 ligases for TPD [27]. VHL functions 
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as a substrate adaptor within the Cullin 2 E3 ligase complex, playing a crucial role in target-
ing hypoxia-inducible factor 1-alpha for rapid and efficient degradation [28, 29]. CRBN, a 
substrate receptor within the Cullin 4A E3 ligase complex, is the second E3 ligase commonly 
used in the PROTAC design [30, 31]. IMiD thalidomide and its derivatives have been shown 
to bind to CRBN, facilitating the degradation of various neo-substrate proteins through the 
UPS [32, 33]. Despite numerous E3 ligases, only 12 (approximately 1.1%) have been incorpo-
rated into PROTAC design, highlighting the need for further exploration and expansion of E3 
ligase diversity in TPD strategies [34]. Several E3 ligases, including cIAP (cellular inhibitor of 
apoptosis protein), MDM2 (mouse double minute 2), DCAF11 (DDB1 and CUL4 associated 
factor 11), DCAF15, DCAF16, FEM1B (protein fem-1 homolog B), and KEAP1 (Kelch-like 

Fig. 1. Mechanistic overview of TPD by PROTACs and MGs. (A) PROTAC-mediated degradation mechanism through CRBN E3 ligase using a 
heterobifunctional molecule. (B) MG-mediated degradation mechanism using a monovalent small molecule. In both cases, PROTAC- or MG-induced ternary 
complex formation between the E3 ligase and the POI leads to polyubiquitination by the E2 ligase. The ubiquitin-tagged POI is then recognized and degraded 
by the proteasome. Graphic created in BioRender (https://BioRender.com/ynak6b6). PROTACs, proteolysis-targeting chimeras; POI, protein of interest; TPD, 
targeted protein degradation; MGs, molecular glues; CRBN, cereblon.

Table 1. Key differences between PROTACs and MGs

PROTACs MGs
Mechanism Induces protein degradation via E3 

ligase recruitment
Enhances PPI

Structure Bifunctional molecule with a linker Small molecule

Discovery Enables rational design Mostly serendipitous

Target Broad (E3 ligase-dependent) and 
predictable

Limited (PPI-dependent) and 
undetermined

Cell permeability Lower (large size) Higher (small size)

Optimization Challenging (PK issues) Easier (small-molecule properties)
PROTACs, proteolysis-targeting chimeras; MGs, molecular glues; PPI, protein-protein interactions; PK, pharmacokinetic.
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ECH-associated protein 1), have been reported as potential candidates for PROTAC devel-
opment, expanding the range of targetable proteins in TPD strategies [35–37]. The E3 ligase 
library has immense untapped potential for future research. Further studies will be needed to 
explore new E3 ligases for TPD design, along with expanded investigations into diverse target 
proteins, to enhance the applicability and effectiveness of TPD-based therapies.

THERAPEUTIC APPLICATIONS OF TARGETED PRO-
TEIN DEGRADATION

PROTAC technologies have been actively studied for various protein-related diseases, 
showing significant therapeutic efficacy in clinical trials. PROTACs offer a novel approach 
to cancer therapy by selectively degrading proteins essential for cancer cell proliferation and 
survival. Notable examples include ARV-110 (for prostate cancer), ARV-471 (for breast can-
cer), and CFT-1946 (targeting BRAF-mutant cancers) [38, 39]. In addition, PROTAC-based 
strategies are being explored for the removal of pathogenic protein aggregates associated with 
neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease [35, 40, 41]. 
Research is also underway to develop PROTACs targeting key proteins involved in immune 
response regulation, including interleukin-1 receptor-associated kinase 4, Bruton tyrosine 
kinase (BTK), and IKZF1/3, to modulate the inflammatory processes and provide potential 
therapeutic options for autoimmune and inflammatory diseases [42, 43]. The E3 ligands used 
in PROTACs are derived primarily from IMiDs and generally have a molecular weight of less 
than 300 Da. Among them, (R)-thalidomide, the E3 ligase ligand in ARV-471, has entered 
Phase 3 clinical trials. Thalidomide derivatives are the most commonly used CRBN ligands in 
PROTAC design owing to their high efficacy in recruiting E3 ligases for TPD [44]. Currently, 
PROTAC drugs targeting various proteins, including androgen receptor, estrogen receptor, 
B-cell lymphoma-extra large, IKZF1/3, and BTK, have entered clinical trial stages, highlight-
ing their potential as novel therapeutic options (Table 2). Despite their promise, PROTAC 
drug development faces challenges such as complex synthesis, high costs, and regulatory 
uncertainties. Thus far, no PROTAC-based therapy has received approval from the Food and 
Drug Administration (FDA) or other regulatory agencies.

Because MGs must induce specific PPIs, their discovery is challenging and often unpredict-
able, making their development more limited than other therapeutic approaches. In addition, 
MGs cannot be applied universally to all target proteins because they rely on interactions with 
specific proteins, restricting their broader applicability [23]. As a result, compared to PROT-
ACs, MGs have attracted relatively less research and development attention. Thus far, the only 
FDA-approved MGs are thalidomide (Thalomid) and its analogs, lenalidomide (Revlimid) and 
pomalidomide (Pomalyst) [23]. Table 3 provides examples of MGs that have entered clinical 
trials. Bristol-Myers Squibb (Princeton, NJ, USA) is a leading company in this field, holding a 
pipeline of MGs through Celgene, which includes CC-92480 (IKZF1/3), CC-90009 (GSPT1), 
and CC-220 (IKZF1/3) [45–47]. The development of PROTAC-based and MG-based novel 
therapeutics is expanding steadily, and an increasing number of innovative treatments are ex-
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pected to emerge.

CHALLENGES AND FUTURE DIRECTIONS

TPD enables the targeting of “undruggable” proteins that were previously inaccessible to 
conventional therapies. Unlike traditional inhibitors that just suppress protein activity, TPD 
eliminates the target protein itself, allowing for complete functional removal. This approach 
can also reduce resistance caused by long-term selective pressure, making it a promising 
strategy for durable therapeutic effects [48]. In addition, unlike conventional inhibitors, TPD 
molecules exhibit a catalytic mode of action, enabling a single molecule to degrade multiple 
target proteins. This catalytic effect allows for therapeutic efficacy at lower concentrations, po-
tentially reducing toxicity and off-target side effects and improving the overall safety profile of 
TPD-based therapies [6]. Nevertheless, despite their potential, PROTACs and MGs still face 
certain limitations that must be addressed before they can be adopted widely as therapeutics 
for various refractory diseases.

PROTACs face several challenges because of their relatively high molecular weight and 
pharmacokinetic (PK) limitations. These molecules are generally large, exhibit low solubility, 

Table 2. Current clinical-stage PROTACs

Compound Target protein Indication Reference
ARV-110 AR Metastatic castration-resistant prostate cancer [65]

ARV-766 AR Metastatic castration-resistant prostate cancer [66]

ARV-471 ER Breast cancer (ER+/HER2-) [67]

DT2216 BCL-XL Hematologic malignancies, solid tumors [68]

NX2127 BTK, IKZF1/3 CLL, NHL [69]

NX5948 BTK B-cell malignant tumors and autoimmune diseases [70]

CFT 1946 Mutant BRAF V600E Melanoma, colorectal cancer [71]

CFT 8634 Bromodomain-containing protein 9 Synovial sarcoma [72]

CFT 8919 Mutant EGFR L858R Non-small cell lung cancer [73]

KT-474 IRAK4 Autoimmune diseases [74]
PROTACs, proteolysis-targeting chimeras; AR, androgen receptor; ER, estrogen receptor; BCL-XL, B-cell lymphoma-extra large; BTK, Bruton tyrosine kinase; IKZF, ikaros; CLL, 
chronic lymphocytic leukemia; NHL, non-hodgkin’s lymphoma; BRAF, B-Raf proto-oncogene, serine/threonine kinase; EGFR, epidermal growth factor receptor; IRAK4, interleukin-1 
receptor-associated kinase 4.

Table 3. Current clinical-stage MGs

Complound Target protein Indication Reference
CC-92480 IKZF1/3 MM [75]

CC-90009 GSPT1 AML, MDS [76]

CC-220 IKZF1/3 Relapsed/refractory MM, NHL, systemic lupus 
erythematosus.

[77]

E7820 RBM39 Relapsed or refractory AML, MDS or chronic 
myelomonocytic leukemia

[78]

CFT 7455 IKZF1/3 MM, NHL [79]

NVP-DKY709 IKZF2 Cancer immunotherapy [80]
MGs, molecular glues; IKZF, ikaros; MM, multiple myeloma; GSPT1, G1 to S phase transition 1; AML, acute myeloid leukemia; MDS, myeloid dysplasia syndrome; NHL, non-Hod-

gkin’s lymphoma.
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and have restricted cell permeability, which can hinder their intracellular delivery. In addition, 
metabolic instability can lead to a short half-life in vivo, potentially limiting their therapeutic 
effectiveness [49]. Optimizing the design of the linker and the ligand that binds to the target 
protein is necessary to overcome these challenges. Enhancing linker properties can improve 
cell permeability, stability, and PK, while refining ligand selection can enhance the binding 
affinity and specificity, ultimately increasing the efficacy of PROTAC-based therapeutics [50]. 
Furthermore, high concentrations of PROTACs can lead to a phenomenon known as the Hook 
Effect, which paradoxically reduces protein degradation efficiency. This occurs when ternary 
complex formation between the target protein, E3 ligase, and PROTAC is impaired. Instead of 
forming a productive ternary complex, excess PROTAC molecules preferentially bind individ-
ually to the target protein or E3 ligase, forming an inactive binary complex and reducing deg-
radation efficiency [51]. Careful dose optimization is essential in clinical settings to prevent 
this. End-point binding free energy calculation can be used to characterize the stabilization and 
hook effects in PROTAC systems, optimizing the computational conditions to improve the 
prediction accuracy for rational PROTAC design [52].

Various innovative approaches are being introduced to overcome the limited accessibility of 
conventional PROTACs. Various innovative PROTAC technologies have been developed to 
enhance the selectivity for specific tissues and cells, including Ab-PROTAC, which uses anti-
bodies to target cell membrane surface proteins for improved accessibility [53, 54]; pc-PROT-
AC, a UV-dependent PROTAC activated at specific locations using UV light [55]; CLIPTAC, 
which addresses cell permeability issues by linking E3 ligases and target proteins through 
intracellular chemical reactions [56, 57]; and Folate-PROTAC, which selectively delivers 
PROTACs to cancer cells with high FOLR1 expression [58]. These advances significantly ex-
pand the potential applications of PROTAC technology.

The main limitation of MGs is the lack of rational design strategies, making their discovery 
and development challenging. The effects of MGs are difficult to predict because they must 
induce PPIs to enable protein degradation or functional regulation. Furthermore, MGs cannot 
be applied to proteins not engaging in PPIs, limiting their target scope [23]. The rational de-
velopment of MGs will require new platforms incorporating screening approaches focused on 
targets and effectors, along with chemical design strategies [59]. A combination of innovative 
biochemical assays (TR-FRET, AlphaScreen), cell-based screening methods (viability/toxic-
ity analysis, reporter gene assays, NanoBRET), co-immunoprecipitation, proximity labeling 
techniques (BioID, TurboID, AirID), and computational approaches is crucial to screen and 
characterize MGs effectively [60–62]. New screening technologies and biochemical analysis 
methods for MG discovery are evolving. AI-based machine learning is expected to play a key 
role in predicting the MG mechanisms of action and optimizing drug design [63, 64].

CONCLUSION

TPD is an innovative approach that overcomes the limitations of SMIs by directly degrad-
ing target proteins, offering a novel therapeutic strategy for disease treatment. Among current 
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TPD technologies, PROTACs and MGs are the most actively researched, showing promise 
as therapeutic agents for cancer, neurodegenerative diseases, and autoimmune disorders, with 
some candidates having entered clinical trials. Using E3 ligases to degrade the target proteins, 
TPD technologies can effectively target undruggable proteins that are difficult to modulate 
with conventional drugs. Nevertheless, challenges persist, such as PK limitations in PROTACs 
and target protein restrictions in MGs, necessitating further technological advancements and 
research efforts to overcome these limitations. The advances in TPD technology are driving 
the development of new drug discovery platforms that focus on identifying novel E3 ligases, 
optimizing drug design, and AI-driven drug development. These advances will enable TPD 
technology to establish itself as a more precise and effective therapeutic approach, playing a 
crucial role in treating various diseases, including refractory and difficult-to-treat conditions.
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