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Effect of glucagon-like peptide 1 on salivary 
gland hypofunction in diabetic db/db mice
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Abstract
Salivary gland dysfunction is a common complication of diabetes. Decreased saliva produc-
tion and changes in saliva composition may cause oral diseases. Reactive oxygen species 
(ROS) generation in the salivary glands results in the loss of acinar cells and decreased sa-
liva secretion. Glucagon-like peptide 1 (GLP-1) is the incretin hormone that regulates blood 
glucose level and can suppress ROS production and inflammation through its antioxidant 
effects. Dipeptidyl peptidase-4 (DPP-4) is an enzyme that breaks down GLP-1. In this study, 
we evaluated the pathological role of DPP-4 and GLP-1 on salivary gland dysfunction in type 
2 diabetic db/db mice. We observed reduced salivary secretion and histopathological alter-
ation of salivary glands in the db/db mice. The increased DPP-4 and decreased GLP-1 levels 
in the salivary glands were also detected in the db/db mice. Furthermore, the db/db mice 
had increased apoptosis and oxidative injury in salivary glands. There was an accumulation 
of advanced glycation end products and mucus in the salivary glands of the db/db mice. In 
conclusion, these results showed the possible involvement of DPP-4 and GLP-1, leading to 
increased ROS-induced apoptosis in diabetes-related salivary gland dysfunction. DPP-4 and 
GLP-1 may be a pharmacological target for patients with diabetes-related salivary gland dys-
function.
Keywords: diabetes; dipeptidyl peptidase 4; glucagon-like peptide 1; xerostomia; salivary 
hypofunction

INTRODUCTION

Saliva is essential for digestion, taste, cleansing, and antimicrobial action. Salivary gland dys-
function can be caused by various factors such as systemic diseases, medications, radiation, and 
aging [1–3]. Diabetes has long been known to be associated with oral diseases [4, 5]. Oral dryness 
is a common symptom in diabetic patients, and changes in the salivary glands and their functions 
are linked to hyperglycemia Patients with diabetes report symptoms of dry mouth and decreased 
salivary secretion [6–9]. Inadequate saliva production can damage tissue, making it more suscep-
tible to infections [10]. Current treatments for impaired salivary secretion offer only temporary 
relief and fail to address the underlying cause. Therefore, research into the mechanisms and treat-
ments of salivary gland dysfunction is necessary to improve salivary gland function [11, 12].

Glucagon-like peptide 1 (GLP-1) is the major incretin hormone released from L cells that reg-
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ulates blood sugar by stimulating glucose-dependent insulin secretion and suppressing gluca-
gon secretion [13, 14]. Dipeptidyl peptidase-4 (DPP-4) is an enzyme responsible for breaking 
down GLP-1. DPP-4 inhibitors, such as sitagliptin, vildagliptin, and saxagliptin, prevent the 
inactivation of endogenously released incretin hormones, prolonging their physiological ac-
tions. DPP-4 inhibitors have roles beyond glucose regulation; they have cytoprotective effects 
against various organ damages DPP-4 inhibitors have demonstrated protective effects against 
various diabetes complications, including non-alcoholic fatty liver disease, impaired lipid 
function due to obesity, pancreatic beta cell atrophy, cardiovascular complications, and neu-
ropathy [15]. Saxagliptin suppressed the increased insulin signaling impairment and oxidative 
stress in a D-galactose-induced aging model [16]. Linagliptin treatment improves diabetic ret-
inopathy by reducing oxidative stress and decreasing the formation of advanced glycation end 
products (AGEs) [17]. Linagliptin also reduced AGE-mediated oxidative stress in cultured en-
dothelial cells and lowered AGE levels, the expression of the receptor for AGE (RAGE), and 
oxidative stress in diabetic rats [18]. In animal studies, Vildagliptin prevented diabetes-related 
vascular damage by reducing AGEs, RAGE, and oxidative marker levels [19]. Recently, the 
DPP-4 inhibitor, alogliptin, was found to block the AGE-RAGE axis and reduce albuminuria 
in patients with type 2 diabetes [20]. Moreover, gemigliptin improved salivary gland function 
in streptozotocin-induced diabetic rats by exerting antioxidant and antiapoptotic effects [21]. 
Building upon previous findings, this study aimed to verify the pathological roles of DPP-4 
and GLP-1 in diabetes-induced salivary gland dysfunction.

MATERIALS AND METHODS

Animals
Seven male db/db type 2 diabetic mice and seven male wild-type C57BL/6 mice, five weeks 

of age, were supplied by Central Lab Animal (Seoul, Korea). The mice were then randomly 
divided into the C57BL/6 control group (n = 7) and the diabetic db/db model group (n = 7). 
The animals were housed in a temperature (20℃–25℃) and humidity-controlled (40%–70%) 
barrier system with a 12/12 hr light/dark cycle. After five weeks, salivary glands were isolated 
from each mouse at necropsy. The animal experiments were conducted following the pro-
cedures approved by the Institutional Animal Care and Use Committee of Jeonbuk National 
University Laboratory Animal Center (IACUC, Approved No.: JBNU 2021-087).

Collection of saliva
The mice were anesthetized, and pilocarpine hydrochloride (1.5 mg/kg, IP) was adminis-

tered. We then placed cotton balls in the mouths of the mice for 15 minutes to collect saliva. 
After 15 minutes, we measured the weight of the cotton balls to determine the amount of sa-
liva absorbed. We compared and analyzed salivary secretion by calculating the difference in 
weight between the cotton balls before and after saliva absorption.
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Transferase dUTP nick-end labeling staining
We conducted cell apoptosis analysis within the salivary gland tissue of mice. The process 

involved fixing the samples with formaldehyde, dehydrating them, and embedding them in 
paraffin blocks. Subsequently, we sectioned the paraffin blocks to 4 μm. Next, we deparaffin-
ized the tissue sections twice in xylene (5 minutes each) and rehydrated them in ethanol. The 
terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was performed 
according to the DeadEndTM Fluorometric TUNEL System instructions from Promega (Mad-
ison, WI, USA). Cell nuclei were counterstained with DAPI mounting solution (4',6-diamidi-
no-2-phenylindole, Santa Cruz Biotechnology, Santa Cruz, CA, USA), and TUNEL-positive 
cells were quantified. TUNEL-positive apoptotic cells were visualized with green fluorescence 
using a BX51 microscope (Olympus, Tokyo, Japan). Five high-power fields (× 200 magnifi-
cation) were randomly selected for each group, and the number of TUNEL-positive cells was 
calculated using ImageJ software (NIH, Bethesda, MD, USA).

Histopathological examination 
The sections, fixed in 10% formalin and embedded in paraffin, were deparaffinized and re-

hydrated. Hematoxylin and Eosin (H&E) staining was performed for histological evaluation. 
To assess the accumulation of mucins (neutral mucopolysaccharides dyed pink), we stained 
the sections with Periodic Acid-Schiff (PAS) and performed a hematoxylin counterstain. Slide 
observations were made using an optical microscope at × 200 magnification (BX51, Olym-
pus).

Immunohistochemistry
The 4 μm thick sections, fixed in 10% formalin and subsequently embedded in paraffin, un-

derwent deparaffinization and rehydration through an ethanol gradient. Antigen retrieval was 
performed using a microwave to treat the sections to Tris-EDTA Buffer (10 mM Tris Base, 1 
mM EDTA Solution, 0.05% Tween 20, pH 9.0). Endogenous peroxidase activity was neutral-
ized with 3% hydrogen peroxide, followed by a 30-minute blocking step using 2.5% normal 
horse serum. The following primary antibodies were used: 8-hydroxy-2'-deoxyguanosine (8-
OHdG, Abcam, Waltham, MA, USA) and AGEs (TransGenic, Fukuoka, Japan). Primary an-
tibody signals were detected using the VECTASTAIN Elite ABC Universal Kit (Vector Lab-
oratories, Burlingame, CA, USA), and visualization was achieved with the DAB peroxidase 
substrate kit (Vector Laboratories). Counterstaining was performed with hematoxylin, and the 
samples were mounted. Tissue sections were incubated with nonimmune animal serum in-
stead of the primary antibodies as a negative control. Observations were made using an optical 
microscope at 200 × magnification (BX51, Olympus). Quantification was done using ImageJ 
software to measure the average optical density (mm2) per unit area in five randomly selected 
areas at 200 × magnification (NIH).

Measurement of dipeptidyl peptidase-4 and glucagon-like peptide 1
The DPP4 activity and GLP-1 level were measured using the mouse DPP4 (MyBioSource, 



Role of GLP-1 in diabetes-induced hyposalivation

142  |  http://www.jbtr.or.kr https://doi.org/10.12729/jbtr.2023.24.4.139

San Diego, CA, USA) and GLP-1 ELISA Kit (MyBioSource), following the manufacturer’s 
instructions. The results were measured using the Spark® Multimode Microplate Reader (Te-
can, Männedorf, Switzerland).

Measurement of advanced glycation end products
Following the manufacturer’s instructions, we detected AGE levels in salivary gland tissue 

and serum using the mouse AGEs ELISA kits (MyBioSource). Optical density measurements 
were taken using a Spark® Multimode Microplate Reader (Tecan).

Statistical analysis
Statistical analysis was performed by performing an unpaired t-test between two groups us-

ing Prism 8.0 software (GraphPad, San Diego, CA, USA).

RESULTS

Salivary gland dysfunction and histopathological alterations in db/db mice
Body weight was higher in the db/db mice at the endpoint, and blood glucose levels also 

increased in the db/db mice (Fig. 1A and B). Additionally, salivation decreased significantly 
in the db/db mice (Fig. 1C). The weight of the salivary gland reduced considerably in the db/
db mice (Fig. 1D). H&E staining was performed to observe morphological changes in the 
salivary gland. The ductal area to serous acini area ratio increased in the salivary gland. In 
contrast, the location of serous acinar cells decreased in the db/db mice (Fig. 2A and B). 

Dipeptidyl peptidase-4 activity and glucagon-like peptide 1 levels in the salivary 
gland and serum

There was a significant increase in both salivary gland and serum DPP-4 activity in db/
db mice compared to the normal mice (Fig. 3A and B). In contrast, GLP-1 levels in salivary 
glands and serum significantly decreased in the db/db mice compared to the normal mice (Fig. 
3C and D). This could potentially have implications for DPP-4 and GLP-1 in salivary gland 
dysfunction.

Fig. 1. Salivary gland dysfunction in db/db mice. (A) Body weights. (B) Blood glucose levels. (C) Amount of salivary secretion. (D) Salivary gland weight. All 
data are presented as the mean ± S.D. (n = 7). * p<0.05.
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Apoptosis and oxidative injury in the salivary glands of db/db mice
TUNEL assay was conducted to confirm apoptosis in the salivary glands. TUNEL-positive 

apoptotic cells were significantly increased in the db/db mice (Fig. 4A and B). Immunohisto-
chemistry was conducted to assess the extent of 8-OHdG accumulation as a marker of cellular 
damage induced by oxidative stress. 8-OHdG presence was confirmed in the salivary glands. 
Accumulation of 8-OHdG increased in the db/db mice (Fig. 4C and D).

Accumulation of advanced glycation end products and mucus in the salivary 
glands of db/db mice

The accumulation of AGEs in the salivary glands was examined using immunohistochem-
istry. There was an increased accumulation of AGEs in the db/db mice (Fig. 5A and B). AGE 
levels were measured in salivary gland lysate and serum. The levels of AGEs increased in both 
salivary glands and serum in the db/db mice (Fig. 5C and D).

PAS staining was performed to confirm changes in mucin accumulation in salivary gland 
acinar cells. In the normal group, the acini showed moderate staining with PAS reagents. 
However, in the db/db mice, there was a noticeable increase in staining intensity, indicating a 
higher accumulation of mucin within the acini (Fig. 6A and B). 

Fig. 2. Histopathological alteration of salivary glands in db/db mice. (A) Representative H&E images of salivary glands. Scale bar = 200 μm. (B) 
Quantitative evaluation of acinar cell area and duct area. All data are presented as the mean ± S.D. (n = 7). * p<0.05. H&E, Hematoxylin and Eosin.

Fig. 3. DPP-4 activity and GLP-1 levels in salivary glands and serum of db/db mice. (A) DPP-4 activity in salivary glands. (B) DPP-4 activity in Serum. (C) 
GLP-1 levels in salivary glands. (D) GLP-1 levels in serum. All data are presented as the mean ± S.D. (n = 7). * p<0.05. DPP-4, dipeptidyl peptidase-4; GLP-1, 
glucagon-like peptide 1.
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Fig. 4. Apoptosis and oxidative injury in salivary glands of db/db mice. (A) TUNEL staining of apoptotic cells in salivary gland tissue sections. Scale bar = 
200 μm. (B) Quantitative analysis of TUNEL positive cells per unit area. (C) Immunohistochemical staining for 8-OHdG. Scale bar = 200 μm. (D) Quantification 
of the 8-OHdG signal intensity. All data are presented as the mean ± S.D. (n = 7). * p<0.05. TUNEL, transferase dUTP nick-end labeling.

Fig. 5. AGEs accumulation in salivary glands of db/db mice. (A) Immunohistochemical staining for AGEs. 
Scale bar = 200 μm. (B) Quantification of the AGEs signal intensity. (C) AGEs levels in salivary glands. (D) 
AGEs levels in serum. All data are presented as the mean ± S.D. (n = 7). * p<0.05. AGEs, advanced glycation 
end products.
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DISCUSSION

Saliva is essential in maintaining oral health homeostasis [1–3]. Without adequate saliva 
production, oral tissues become damaged and vulnerable to infection, which can lead to oral 
diseases [10]. The generation of reactive oxygen species (ROS) in the salivary glands results 
in acinar cell loss and decreased saliva secretion [9]. In this study, we investigated the role of 
DPP-4 and GLP-1 on salivary gland function in db/db diabetic mice.

DPP-4, also known as adenosine deaminase complexing protein 2 or CD26, degrades in-
cretin hormones such as GLP-1 [22, 23]. DPP-4 inhibition improves metabolic control by en-
hancing GLP-1-mediated pancreatic insulin secretion and suppressing hepatic glucose produc-
tion [24]. GLP-1 has a very short half-life and is rapidly metabolized by DPP-4 [25–27]. GLP-
1 is an incretin hormone secreted from the gut lumen that enhances insulin secretion [28–30]. 
Increasing endogenous levels of GLP-1 may improve glycemic control in individuals with 
type 2 diabetes and could potentially serve as a treatment for diabetes-related complications. 
We first confirmed increased DPP-4 activity and decreased GLP-1 levels in the salivary glands 
and serum of db/db mice, demonstrating their function within the glands.

Studies have shown that hyperglycemia can increase intracellular ROS through glycation 
reactions of amino acids or proteins, glutathione depletion, and inactivation of ROS scavenger 
enzymes. This can result in mitochondrial dysfunction and apoptosis [31–35]. Hypergly-
cemia-induced oxidative stress can be blocked by antioxidants, suggesting that ROS plays 
a vital role in hyperglycemia-induced cell death [36, 37]. We showed apoptosis in salivary 
glands with elevated levels of ROS. Increased ROS may be caused by increased DPP-4 and 
a decrease in GLP-1. GLP-1 plays a role in glucose-stimulated insulin secretion and glucone-
ogenesis, improving glycemic control in individuals with type 2 diabetes [24]. GLP-1, acting 
as an antioxidant, can suppress ROS production and inflammation in endothelial cells during 
hyperglycemia and in animal models of diabetes [38, 39]. DPP-4 increases ROS production 
in endothelial cells, and DPP-4 deficiency inhibits ROS production in cardiomyocytes [40, 
41]. DPP-4 inhibitors reduce ROS production, prevent mitochondrial dysfunction, improve 
endothelial function, and reduce vascular inflammation and oxidative stress in animal models 

Fig. 6. Mucin accumulation in salivary gland of db/db mice. (A) Periodic acid-Schiff (PAS) staining of salivary glands. Scale bar = 200 μm. (B) 
Quantification of PAS stained signal intensity. All data are presented as the mean ± S.D. (n = 7). * p<0.05.
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of diabetes and its complications [42–45]. A DPP-4 inhibitor, gemigliptin, has been reported 
to improve liver disease and diabetes by alleviating mitochondrial dysfunction and reducing 
ROS production [46, 47]. Based on previous studies and our results, DPP-4 and GLP-1 are 
attributed to the increase of ROS.

In addition, there was increased accumulation of AGEs in the salivary glands of db/db mice. 
In a previously reported study, AGEs formation inhibition by increased GLP-1 in DPP-4-defi-
cient mice improved diabetes and diabetic complications [48, 49]. Additionally, numerous ex-
isting studies have verified the antiglycation effect of many DPP-4 inhibitors [17–20, 50]. Fur-
ther, gemigliptin prevented a decline in salivary gland function through its antioxidant effect in 
diabetic rats [21]. We observed increased DPP4 activity, decreased GLP-1 levels, and elevated 
AGE accumulation in db/db mice. These factors subsequently induced ROS and, ultimately, 
apoptosis in salivary gland cells.

We observed morphological differences in the ratio of acinar cells to ductal cells in the 
salivary glands. Db/db mice showed decreased acinar cells and increased ductal cells in their 
salivary glands relative to the control group. Similar results have been observed in diverse 
salivary gland dysfunction models. The diabetes-related reduction in secretory cells in salivary 
glands is thought to result from decreased cell proliferation or increased cell death [38]. We 
measured salivary flow after administering pilocarpine, a parasympathetic agonist on musca-
rinic acetylcholine receptors in salivary glands [42]. The increase in ROS-induced apoptosis 
caused by diabetes may lead to salivary gland dysfunction. Oxidative stress, caused by ROS 
accumulation, altered secretion functions, such as saliva secretion, salivary amylase, and cal-
cium levels, in rodent salivary glands [45]. These findings suggest that ROS-related oxidative 
stress can lead to salivary secretion disorders.

In our study, strong PAS staining demonstrated increased mucin accumulation in the acini in 
the db/db mice. Mucin plays a crucial role in mucosal lubrication, serving as one of the prima-
ry functions of saliva. Mucin can hold significant water, preventing mucosal dehydration [51, 
52]. Mucins are vital components of saliva, lubricating and facilitating microbial adhesion. 
Mucus accommodates microbial communities and forms a protective coating on epithelial 
surfaces, playing a significant role in host defense [53]. Our results showed that mucin accu-
mulated in acini with salivary gland dysfunction. Previous reports have shown that stronger 
PAS staining density in acini is associated with the accumulation of mucin in diabetic salivary 
glands [54–56]. Mucin composition in salivary glands can change due to salivary gland dys-
function [57]. Huang et al. also showed that acini of submandibular glands were moderately 
stained by PAS reagents in db/m mice but strong staining was observed in db/db mice. Stron-
ger PAS staining densities of acini in db/db mice demonstrated that more mucins accumulated 
in the acini of diabetic salivary glands [54]. Therefore, mucus accumulation under diabetic 
conditions provides evidence that the secretory function of the salivary glands is impaired . 

The limitation of this study is that we only showed the impaired DPP-4 activiry and GLP-
1 levels under diabetic conditions. To better understand diabetes-related salivary dysfunction,  
additional investigation is required to elucidate the effect of GLP-1 recovery by DPP-4 inhibi-
tion using a selective DPP-4 inhibitor.
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In conclusion, we have shown the possible involvement of DPP-4 and GLP-1 in increased 
ROS-induced apoptosis in diabetes-related salivary gland dysfunction. The pathological 
changes induced by DPP-4 and GLP-1 in salivary glands decrease the amount salivary secre-
tion and increase the accumulation of mucins in the salivary glands due to decreased secretory. 
DPP-4 and GLP-1 could be a potent pharmacological target for patients with diabetes-related 
salivary gland dysfunction. 
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