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Abstract
Global concerns have grown regarding emerging infectious diseases (EIDs) caused by previ-
ously unknown pathogens. Considering that strengthening surveillance capacity for unknown 
diseases is one of the core capacities for preparedness and early response to EIDs, identi-
fying areas with poor capacity could be beneficial to prioritize regions for the improvement of 
surveillance. In this regard, we aimed to develop prediction models to identify high risk areas 
for low surveillance capacity for unknown diseases in a global scale. Unexplained death 
events reported between 2015 and 2019 were collected from two internet-based surveillance 
systems, ProMED-mail and Global Public Health Intelligence Network. From the reports, the 
number of reported unexplained deaths at the first report and the time gap between death 
and report were extracted as measures for sensitivity and timeliness of surveillance capacity, 
respectively. Using geographical locations of the reports and published global scale spatial 
data, including demographic, socioeconomic, public health and geographical variables, we 
fitted two boosted regression tree models to predict regions with the low sensitivity and time-
liness. The performance of prediction model for the low sensitivity showed moderate validity, 
but in terms of the model for timeliness, the performance was unreliable. Therefore, we pro-
vided predicted risk only for low sensitivity. The mean predicted risks of low sensitivity were, 
respectively, 45.2%, 37.4%, 12.5%, and 3.0% in low-income, lower middle-income, upper 
middle-income, and high-income countries. Enhancing surveillance capacity in low-income 
countries is highly required, given the predicted low level of sensitivity despite the importance 
of early response.
Keywords: unexplained death; undiagnosed diseases; internet-based surveillance

INTRODUCTION

Global public health concerns regarding the emergence of novel diseases have increased. The 
impacts of these novel diseases are often severe because the whole population is immunologically 
naïve to the emergent diseases, and medical treatments and vaccines are limited. In addition, the 
steeply increasing number of international travels between countries and continents, in the con-
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text of globalization, increases the pandemic risk by the emerging diseases. The coronavirus 
disease (COVID-19) pandemic is a prime example that shows how an emerging infectious 
disease (EID) can have a substantial impact on public health [1] and the world economy [2]. 
To make matters worse, the incidence of an EID is not a rare event. More than 300 EIDs have 
been reported from 1940 to 2004 [3] and the emergence of infectious diseases such as Hen-
dra, Nipah, Severe Acute Respiratory Syndrome (SARS), Middle East respiratory syndrome 
(MERS), etc., is still an ongoing challenge that needs to be tackled [4, 5]. 

Early response is one of the key strategies to minimize the impact of EIDs at the local and 
global level. Relevant evidence of the benefits of early response have been reported for Ebola 
[6] and Influenza [7], and it has also been accumulating for COVID-19 in various countries 
[8]. According to a recent study [9], a three-week delayed response could have caused 18-fold 
more cases, and a three-week earlier response would have reduced 95% of the cases during 
the initial phase of COVID-19 in Wuhan, China. In enhancing the capability of early response 
against EIDs, typical approaches have been the identification of the potential zoonotic patho-
gen in wildlife [10] or identification of high-risk areas for spill-over events (i.e., the transmis-
sion of pathogens from animals to human population) [4, 11]. Considering that about 60% of 
EIDs are transmitted from animals [3], these efforts could motivate local health authorities to 
increase preparedness for EIDs or to facilitate the processes of vaccine development before 
the pathogen encounters the human population.

Strengthening the surveillance capacity against novel infectious diseases or EIDs could be 
another approach to enhance the capability of early response. Surveillance system with high 
sensitivity (i.e., detecting disease events based on small number of cases reported), and with 
high timeliness (i.e., shortening the time gap between occurrence of the events and detection), 
could initiate interventions in the early phase of the events [12]. In this regard, identifying 
regions with poor surveillance capacity is important to prioritize areas for the improvement of 
surveillance system. 

In this study, we aimed to provide a prediction map to suggest regions with low surveillance 
capacity for novel infectious diseases. Specifically, we focused on capacity of internet-based 
surveillance systems. Although there are several limitations (e.g., heterogeneity of internet 
access between regions or countries [13]) in using internet-based disease surveillance systems, 
such systems are gaining popularity as a tool for early detection of epidemics before an out-
break is officially recognized, which initiates epidemiological investigations [14, 15]. Indeed, 
the SARS outbreak in 2002 demonstrated the potentials of the early detection capacity of 
internet-based surveillance systems [16]. In the present study, we specifically targeted surveil-
lance capacity for unexplained death events as a proxy for the surveillance capacity on novel 
infectious diseases. The unexplained death events were defined as a human death case from a 
suspicious infectious disease without a confirmed diagnosis in the first report. Therefore, only 
one death could be included. Using unexplained mortality cases rather than morbidity cases, 
we can minimize potential bias from characteristics of diseases (e.g., severity) when measur-
ing regional surveillance capacity. 



https://doi.org/10.12729/jbtr.2022.23.4.191 http://www.jbtr.or.kr |  193

Min et al.

MATERIALS AND METHODS

A global-level study was conducted in three steps. First, reports of unexplained death events 
from 2015 to 2019 (5 years) were collected from the most commonly used web-based surveil-
lance systems, and relevant information, such as geographical locations (i.e., countries, states 
or districts) and indicators of surveillance capacity (i.e., sensitivity and timeliness), were ex-
tracted from the reports. The two indicators for surveillance capacity were the main outcome 
variables. Second, potential predictor variables for the surveillance capacities for unexplained 
diseases were collected for all global regions, except for Antarctica. The predictor variables 
included demographic, socioeconomic, public health, and geographical factors. The study 
unit was a one by one-degree latitude-longitude grid covering the world (N = 17,666). Third, 
machine learning algorithm-based prediction models were developed using the extracted sur-
veillance capacity indicators and predictor variables in each grid where the unexplained death 
events were reported. Subsequently, predicted risk values for lower surveillance capacity were 
produced for every study unit using the extracted predictor variables in the grids and the de-
veloped prediction models.

The reports for unexplained death events were collected from the two internet-based surveil-
lance systems, ProMED-Mail [17] and the Global Public Health Intelligence Network (GPHIN) 
[18]. ProMED-Mail uses information from media reports, official reports and local observers. 
The collected reports are then reviewed by analysts or experts before being disseminated to 
subscribers or published on a website. GPHIN incorporates natural language processing meth-
ods to systematically collect information from news articles, media releases and incidence 
reports and to categorize the information based on pathogen type or hosts etc. 

In order to collect reports of unknown diseases from ProMed-Mail, we designed a search 
string including the terms “undiagnosed OR mysterious OR mystery OR novel OR unknown.” 
For the purpose of gathering reports from GPHIN, we developed a search protocol with the 
following inclusion criteria: 1) reports published in English only, 2) reports containing at least 
one type of infectious disease, and 3) titles containing “unknown” or “undiagnosed” or “mys-
terious.” The exclusion criteria for both data sources were as follows: 1) non-first reports, 2) 
novel subtypes of diseases (e.g., novel strain of norovirus, novel influenza), 3) prion diseases 
(e.g., posts labeled “novel prion update”), 4) endemic diseases, 5) unknown sources (e.g., 
unknown source of food-borne infection), and 6) components (e.g., unknown component of 
drugs).

Two indicators reflecting the surveillance capacity, sensitivity and timeliness, were defined 
as follows: 1) sensitivity—the number of mortality cases at the first report, and 2) timeliness—
the time gap (in terms of days) between incidence of mortality cases and reports (Supple-
mentary Fig. S1). As the target outcome of this study was unknown diseases, various types 
of diseases could be included with different levels of symptom severity. Considering that the 
varying levels of symptom severity may affect the evaluation indicators independent of sur-
veillance capacity, only reports with mortality cases were included in this study. 

Considering that quantitative investigations of associated factors of surveillance capacity are 
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still lacking, we assumed that a comprehensive range of potential factors, including regional, 
demographic, socioeconomic, public health, and geographical factors, could affect the surveil-
lance capacity for unknown diseases. The data for the variables were acquired from various 
sources (Table 1).  

Demographic variables were obtained from the fourth version of the Gridded Population 
of the World (GPW v4) [19]. GPWv4 is a raster format global-scale data with a resolution of 
about 1 km. As the data included estimated population sizes in years 2000, 2005, 2010, 2015, 
and 2020, average values for the two recent years, 2015 and 2020, were used for the analysis. 
Night-time light levels, regional gross domestic product (GDP), and human development 
index (HDI) were used to represent the regional socioeconomic status. Night-time light lev-
el data was satellite-based remote sensing data acquired from the National Aeronautics and 
Space Administration’s Black Marble night-time light product [20] which was a raster-type 
data with a 500 m resolution. Higher night-time light levels were assumed to be associated 
with higher levels of regional economic activities [21]. GDP and HDI were acquired from a 
published report by Kummu et al. [22] in which the annual raster-type data for GDP and HDI 
were provided with a resolution of approximately 10 km for the period 1990–2015. Consider-
ing the period of this study (2015–2019), only data of 2015 was used in the prediction models. 
In addition, income-based country classification by the World Bank (i.e., high-income, up-
per-middle-income, lower-middle-income, and low-income) [23] was included as a categorical 
variable. National-level variables representing the level of public health system performance 
or surveillance capacity were also used, such as health expenditure [24] and the average of 
13 International Health Regulations (IHR) core capacity scores reported by the World Health 
Organization [25]. Urban land use was used as a geographical factor. The land use data were 
acquired from Tuanmu et al. [26], which provided a consensus dataset of land use converging 
four global land cover products: DISCover, GLC2000, MODIS2005, and GlobCover. Among 
12 land use types including forest, water and agricultural land, we considered only urban land 
use, which is known to be associated with accessibility to medical facilities. 

The acquired predictor variables with spatial features were preprocessed to calculate values 
for each study unit grid. Crop and mask functions were used for clipping the raster data to fit 
into each grid and the getValue function was used to extract values where raster cells intersect-

Table 1. Dataset used in this study

Category Variable Data source
Demographic Population NASA SEDAC [19]

Socioeconomic Night time light level NASA [19]

GDP Kummu et al. [22]

Human development index Kummu et al. [22]

Income based country classification World Bank [2]

Public health Health expenditure World Bank [2]

Geographic IHR score World Health Organization [1]

Urban land use Tuanmu et al. [26]
GDP, gross domestic product; IHR, International Health Regulation.
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ed with each study unit grid. The functions for the preprocessing were obtained from the raster 
package [27] in R v.4.0.2 [28]. The geographical distribution of the acquired variables was 
shown in Supplementary Fig. S2 and S3.

Boosted regression tree (BRT) [29] was applied to predict the risk of low surveillance ca-
pacity for unexplained deaths on a global scale. As a tree-based machine learning method, 
BRTs incorporate non-linear associations into high-order interactions between variables and 
usually produce better predictability than traditional generalized linear models. Previous stud-
ies have conducted global-level prediction using the BRT method, but the predictions were 
for other types of outcome variables (i.e., incidence of emerging zoonotic diseases or antimi-
crobial resistance) [4, 30]. Although BRT is limited in that it is considered a type of black-box 
technique and the effect of each predictor on the outcome variables cannot be quantified, rela-
tive influence of each variable can be determined. Considering that we used two indicators for 
measuring surveillance capacity (the number of mortality cases at the first report and the time 
gap between incidence of mortality cases and reports), two prediction models were fitted, one 
for each indicator (Model 1 for sensitivity and Model 2 for timeliness). Specifically, two bina-
ry outcome variables were used: 1) whether the number of mortality cases in the first reports 
were equal to ten or higher (Model 1); and 2) whether the time gap between the occurrence 
of mortality cases and reporting were equal to one week or longer (Model 2). Leave-one-out 
cross validation was used with area under the curve of the receiver-operator characteristic (AUC 
of the ROC) to validate predictability of the models. Because the previous global level pre-
diction studies using BRTs produced an AUC of 0.67 [30], we did not determine the predicted 
risk for low surveillance capacity if our prediction model showed an AUC of less than 0.67. 

RESULTS

An initial search retrieved 2,276 and 658 reports of unknown diseases from the two inter-
net-based surveillance systems, ProMed-Mail and GPHIN, respectively. After examining rele-
vance by screening the title and contents of each report and removing duplicates from the data 
sources, a total of 327 reports remained. Out of the 327 reports, 198 (60.5%) reports included 
human diseases with and without mortality cases. The remaining 129 reports showed mortal-
ity cases only and thus were used for analysis. Out of the 129 reports, a majority (104 reports, 
80.6%) were from low-income or lower middle-income countries. Among the 129 reports, 14 
did not provide detailed location information other than the country name, and 28 reports did 
not contain information on the time gap between the occurrence of death and reporting (Fig. 1). 
The geographical distribution of reported unexplained death events with an assessment of the 
surveillance capacity by the two indicators are shown in Supplementary Fig. S4.

Results of univariable logistic regression analysis, shown in Tables 2 and 3, provide an 
overview of the associations between the predictors and the two indicators of the surveillance 
capacity. In terms of the number of mortality cases shown in the first report, IHR score and 
all socioeconomic variables, including natural log of GDP per capita, national income-based 
country classification, natural log of HDI, and night-time light level, showed significant neg-
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ative associations (Odds Ratios [95% confidence intervals] were 0.758 [0.604–0.918], 0.076 
[0.004–0.384], 0.038 [0.005–0.236], 0.973 [0.945–0.995], and 0.970 [0.951–0.989] for natural 
log of GDP, income-based country classification, natural log of HDI, night-time light level 

Fig. 1. A flow chart of the selection process for collecting unexplained death events. The main purpose 
of this study was to predict areas with low capacity of internet-based surveillance for unexplained death and two 
indicators, sensitivity and timeliness, were used to measure the capacity. Final dataset 1 and 2 illustrated in the 
figure indicates datasets for sensitivity and timeliness, respectively. 

Table 2. Univariable logistic regression analysis for low sensitivity of internet-based surveillance 

Variable Odds ratio 95% Confidence interval p-value N missing
Log (Population size) 0.843 0.669–1.059 0.140 0

Log (GDP per capita) 0.758 0.604–0.918 0.010 0

Income classification1) 0.076 0.004–0.384 0.013 0

Log (HDI) 0.038 0.005–0.236 0.001 0

Night-time light level2) 0.973 0.945–0.995 0.038 0

Health expenditure (2015 US$) 0.937 0.799–1.063 0.358 1

IHR score 0.970 0.951–0.989 0.003 3

Urban land use 0.779 0.435–1.041 0.251 0
Low sensitivity was defined as the number of unexplained death cases in the first reports were equal to ten or higher.
1) Income-based country classification by World Bank (4 categories; high income, upper middle income, lower income, low in-
come). The odds ratio was for high and upper middle-income levels compared to low and lower middle-income levels as a refer-
ence. 
2) Night-time light level values range from 0 to 255, and higher value indicates higher brightness form artificial light.
GDP, gross domestic product; HDI, human development index; IHR, International Health Regulation.
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and IHR, respectively). However, none of the associations were significant for the time gap 
between the occurrence of mortality cases and reporting. 

The results of the two prediction models using BRT are as follows: The LOOCV AUC was 
0.70 (indicating a moderate validity) in Model 1, but 0.58 (indicating a rather low validity) 
in Model 2. Socioeconomic or public health-related predictors (night-time light level, health 
expenditure, HDI, IHR score, and GDP per capita) showed a higher relative influence than the 
others (Supplementary Fig. S5). As low AUC values were obtained in Model 2, we predicted 
risk of low surveillance capacity by using Model 1 only (Fig. 2). The averages of predicted 
risk of low surveillance capacity were 45.2%, 37.4%, 12.5%, and 3.0% in low-income, lower 
middle-income, upper middle-income, and high-income countries, respectively. In terms of 
geographical classification, the sub-Saharan African countries showed the highest average pre-
dicted risk (43.0%) and North America showed the lowest average predicted risk (2.7%).

Table 3. Univariable logistic regression analysis for poor timeliness of internet-based surveillance

Variable Odds ratio 95% Confidence interval p-value N missing
Log (Population size) 1.045 0.816–1.351 0.726 29

Log (GDP per capita) 1.009 0.816–1.249 0.936 29

Income classification1) 0.638 0.214–1.788 0.401 29

Log (HDI) 0.645 0.134–2.951 0.574 29

Night-time light level2) 0.999 0.983–1.015 0.912 29

Health expenditure (2015 US$) 1.026 0.902–1.171 0.689 29

IHR score 0.999 0.979–1.019 0.890 32

Urban land use 1.054 0.892–1.302 0.541 29
Poor timeliness was defined as the time gap between the occurrence of mortality cases and reporting were equal to one week 
or longer.
1) Income-based country classification by World Bank (4 categories; high income, upper middle income, lower income, low in-
come). The odds ratio was for high and upper middle-income levels compared to low and lower middle-income levels as a refer-
ence. 
2) Night-time light level values range from 0 to 255, and higher value indicates higher brightness form artificial light.
GDP, gross domestic product; HDI, human development index; IHR, International Health Regulation.

Fig. 2. Predicted risk for low sensitivity of internet-based surveillance for unexplained deaths. Low 
sensitivity was defined as the number of unexplained death cases in the first reports were equal to ten or higher. 
Boosted regression tree method was employed for the prediction and various published spatial data including 
demographic, socioeconomic, public health and geographical variables were used as predictors. Areas with grey 
color showed lack of predictor variables. 



Web-based surveillance for unknown death

198  |  http://www.jbtr.or.kr https://doi.org/10.12729/jbtr.2022.23.4.191

DISCUSSION

The purpose of this study was to develop a prediction map representing the risk of low 
surveillance capacity for unexplained deaths in a global scale, in order to prioritize regions 
for strengthening surveillance capacity. To this end, we acquired reports of unexplained death 
events from internet-based surveillance systems and various predictor variables including de-
mographic, socioeconomic, public health, and geographic factors. Surveillance capacity was 
measured by two indicators; the number of mortality cases during the first report (sensitivity) 
and the time gap between occurrence of mortality cases and reporting (timeliness). Two pre-
diction models were fitted, one for each indicator, but only the model for predicting sensitivity 
showed reasonable validity, revealing a high risk of low sensitivity in low income countries 
and the sub-Saharan region.  

The findings of this study, based on the outcomes from the logistic regression models and 
BRT results using sensitivity measurements, suggest that socioeconomic and public health-re-
lated factors can explain the risk of lower sensitivity for unexplained death events detection. 
The clear differences between regional socioeconomic statuses could be attributed to the 
availability of different levels of human and financial resources for surveillance by the regions. 
High disease burden with higher and more frequent mortality events in resource-poor regions 
could also explain the results. Considering that the risk of novel disease emergence is also 
high in the low-income and lower-middle-income countries [4], the results imply the urgent 
demands for improving early detection and response capability in the risk area.

On the other hand, the lack of predictability of Model 2, which was fitted to timeliness mea-
surements, indicates that the current predictor factors are insufficient to explain the timeliness 
capacity of the surveillance. Latent predictors, which are associated with timeliness but were 
not used in this study, or a lower sample size than that used for Model 1 could contribute to 
the lack of predictability. However, the results could also indicate that internet-based syndrom-
ic surveillance systems function appropriately in low socio-economic areas, compared to the 
others, in terms of timeliness. A previous study that evaluated timeliness capacity for reporting 
of EIDs showed that the time gap between disease onset and report tend to be high in African 
countries [14]. However, the findings of our study suggest that contrasting results could be 
derived, presumably, due to the following differences between the studies. First, the previous 
study used symptom onset to measure timeliness, not incidences of death as used in our study. 
Second, the time period of the previous study was between 1996 and 2009, but we used data 
between 2015 and 2019. Third, the target outcome was a WHO-verified outbreak in the previ-
ous study, but we employed unexplained death as the target outcome.

In addition, we found that only 18 out of 129 unexplained death events were reported to 
both ProMed-Mail and GPHIN, suggesting low agreement between the two data sources. The 
low level of agreement may imply that multiple data sources should be incorporated for prac-
tical implementation of internet-based surveillance systems for unknown diseases. 

This study has several limitations. First, our study only evaluated the sensitivity and time-
liness of internet-based syndromic surveillance systems. We recommend follow-up studies to 
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assess other attributes such as data quality, cost-effectiveness, predictive value positive, etc. [31] 
and to evaluate other types of syndromic surveillance systems, which use hospital-based clin-
ical data usually obtained from emergency departments [32]. Second, our analysis could not 
incorporate any temporal variations; previous studies have suggested that surveillance capaci-
ty could be enhanced over time [14]. Third, we included only two internet-based surveillance 
system in spite of the existence of many other data sources such as Healthmap, Medisys, etc. 
Incorporation of more data sources of internet-based systems will improve the data quality for 
this research. 

Despite the limitations, to the best of the authors’ knowledge, this study is the first to con-
duct a global-level prediction for low surveillance capacity specifically targeting unexplained 
death. Our results suggest that enhancing surveillance capacity is particularly important and 
needed in sub-Saharan Africa and in low-income countries. Recently, the World Bank initiated 
the West Africa Regional Disease Surveillance Systems Enhancement Project, which aims to 
strengthen capacity of infectious disease surveillance in West Africa [33]. However, the early 
detection capacity still needs improvement [34], especially for surveillance sensitivity, as re-
vealed in this study.

SUPPLEMENTARY MATERIALS

Supplementary materials are only available online from: https://doi.org/10.12729/
jbtr.2022.23.4.191.
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