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Abstract
The rapid development of computer vision and deep learning has enabled these technolo-
gies to be applied to the automated classification and counting of microscope images, there-
by relieving of some burden from pathologists in terms of performing tedious microscopic 
examination for analysis of a large number of slides for pathological lesions. Recently, the 
use of these digital methods has expanded into the field of medical image analysis. In this 
study, the Inception-v3 deep learning model was used for classification of chondrocytes from 
knee joints of rats. Knee joints were extracted, fixed in neutral buffered formalin, decalcified, 
processed and embedded in paraffin, and hematoxylin and eosin (H&E) stained. The H&E 
stained slides were converted into whole slide imaging (WSI), and the images were cropped 
to 79 × 79 pixels. The images were divided into training (60.42%) and test (39.58%) sets 
(46,349 and 30,360 images, respectively). Then, images containing chondrocytes were clas-
sified by Inception-v3 and accuracy was calculated. We visualized the images containing 
chondrocytes in WSIs by adding colored dots to patches. When images of chondrocytes in 
knee joints were evaluated, the accuracy was within the range of 91.20 ± 8.43%. Therefore, it 
is considered that the Inception-v3 deep learning model was able to distinguish chondrocytes 
from non-chondrocytes in knee joints of rats with a relatively high accuracy. The above re-
sults taken together confirmed that this deep learning model could classify the chondrocytes 
and this promising approach will provide pathologists a fast and accurate analysis of diverse 
tissue structures.
Keywords: rats; chondrocytes; digital pathology; classification; deep learning

INTRODUCTION

The explosive increase in the amount of pathological slides for diagnosis has placed a burden 
on pathologists. Furthermore, there has been an inconsistency in diagnostic results according to 
differences in the training field experience of researchers. This has made the development of novel 
tools capable of increasing accuracy and consistency a top priority [1]. Furthermore, the current 
pathological education system for biomedical researchers who need long-term training and pre-
clinical and/or clinical experience cannot meet all of these demands [2].

Digital pathology is a sub-field of pathology that focuses on data management based on infor-
mation generated from digitized specimen slides. The methods of this subfield potentially provide 
greater accuracy, reproducibility and standardization of pathology-based studies and preclinical 
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and clinical trials [3].
For the preparation of digitized slides for specimens, it is common to use a digital scanner, 

which can generate whole slide imaging (WSI). WSI technology has advanced to a point 
where it has replaced the glass slide as the primary means of pathology evaluation [4]. Im-
plementation of WSI is a multifaceted and inherently multidisciplinary endeavor requiring 
both contributions by pathologists and technologists, and executive leadership [5]. With the 
availability of WSI of tissue slides, image processing techniques have been exploited in recent 
decades to automate and optimize the analysis. WSI-based digital pathology has been adopted 
to enhance time efficiency and to reduce the cost [6], even to eliminate potentially human bias 
[7]. Basically, this approach has been applied to quantitative assessment of bone marrow he-
matopoietic lineages [8], mitosis [9] and collagenous tissue [10].

Various applications incorporating AI are being developed to assist the process of pathologic 
diagnosis, and detection and segmentation of specific objects [11]. Among these, deep learning 
achieved high performance on image classification and categorization, and it has been expand-
ed into the field of medical image analysis [12].

The Inception-v3 model has the advantage of being able to simultaneously process multi-
scale targets on multi-levels and collect feature maps with different features. Therefore, it is 
considered to be an efficient tool for classification [13]. Convolutional neural network (CN-
N)-based systems such as VGGNet or ResNet have also been proposed in medical image 
analysis [14].

As it is highly anticipated that automatic classification of specific cells may reduce slide 
reading time and the process of cell detection, AI-based analysis will be warranted in animal 
tissues. The purpose of this study is to classify chondrocytes in knee joints of rats and to eval-
uate accuracy of the results using Inception-v3 deep learning model.

MATERIALS AND METHODS

Data collection
We used 15 hematoxylin and eosin (H&E)-stained slides of knee joints of normal SD fe-

male rats. The slides were retrieved from historical background data.
All slides were scanned using a Panoramic Whole-slide Scanner (3D Histotech, Budapest, 

Hungary) at 20 × magnification in the Department of Biomedical Laboratory Science of Nam-
seoul University. The staining intensity, contrast, and thresholding were not adjusted.

Deep learning 
We used Inception-v3 model for training and testing, and evaluated classification accuracies. 

An overview of the approach is shown in Fig. 1. H&E-stained sections were scanned, con-
verted, cropped, and used for supervised training of Inception-v3. Using this model, cropped 
images were classified as chondrocytes or non-chondrocytes. For assessment of Inception-v3 
performance, classification accuracies were calculated.
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Slide annotation
We cropped the images of knee joint samples to 79 × 79 pixels. For computational learning 

of images, we divided the images into two parts as training and test set. The 65,797 images 
were randomly divided into training (70.4%) and test (29.6%) sets (46,349 and 19,448 images, 
respectively; Table 1).

Visualization of predicted patches
We visualized chondrocytes in WSIs by adding colored dots to patches predicted to be 

chondrocytes. This allowed pathologists to understand the classification method.

RESULTS

Collection of training and evaluation data 
Chondrocytes and non-chondrocytes were present in knee joints from WSI profiles. We 

cropped the images as described above; representative images are shown in Fig. 2. 
Representative chondrocytes are shown in Fig. 2A. Non-chondrocytes such as bone cells, 

bone marrow cells and adipocytes are shown in Fig. 2B.

Inception-v3 classification of chondrocytes and non-chondrocytes
Inception-v3 evaluated square patches and predicted chondrocytes and non-chondrocytes. 

Confusion matrix of chondrocytes and non-chondrocytes showed the accuracies were 91.20 ± 
8.43% (Table 2).

Fig. 1. Procedure of digitization to deep learning analysis of tissue slides. WSI. whole slide imajing.

Table 1. Distribution of training and test set data number of training and test data between chondrocytes 
and non-chondrocytes

Classification  Number of training data Number of test data
Chondrocytes   2,544   3,550

Non-chondrocytes 43,805 15,898

Sum 46,349 19,448
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Visualization of chondrocytes and non-chondrocytes
The data for knee joints are shown in Fig. 3. Representative original H&E images are shown 

in Fig. 3A. Inception-v3 colored chondrocytes are shown in blue and non-chondrocytes in red 
(Fig. 3B). Almost all chondrocytes were so identified as blue. However, a few non-chondro-
cytes were misclassified as chondrocytes.

(A) (B)

Fig. 2. Representative histopathological figures of chondrocytes or non-chondrocytes. (A) Chondrocytes 
(B) Non-chondrocytes.

Table 2. Confusion matrix of chondrocytes and non-chondrocytes

Classification
 Reference data

No. of  data
Chondrocytes Non-chondrocytes

Chondrocytes 2,016   1,534    3,550

Non-chondrocytes    177 15,721 15,898

No. of data 2,193 17,255 19,448

Accuracy (%) 91.20 ± 8.431)

1) Data represent mean ± S.D.

(A) (B)

Fig. 3. Visualization of chondrocytes or non-chondrocytes in the knee joints. (A) Original H&E image, (B) 
Visualized image. Chondrocytes as blue color (arrow) and non-chondrocytes as red (arrow head).



https://doi.org/10.12729/jbtr.2022.23.1.1 http://www.jbtr.or.kr |  5

Jin Seok Kang

DISCUSSION

In this study, we could classify chondrocytes from H&E-stained knee joint slides of rats 
using Inception-v3 model, showing the accuracy as 91.20 ± 8.43%. And we confirmed this 
model was applicable to classify the specific cells, making it possible to achieve automated 
classification of chondrocytes and non-chondrocytes in H&E stained slides.

In the image sets from knee joints, some cells such as trabecular bony tissues and adipocytes 
were misclassified as chondrocytes. To reduce misclassification, it seems that some tissues 
such as trabecular bony tissues, adipocytes and megakaryocytes may be excluded prior to deep 
learning. It was reported that misclassification was more frequent among histologically related 
tissues, where morphologies were shared at higher magnification [14]. Cartilage, periosteal 
tissue and attached skeletal muscle were excluded from the original images for quantification 
of bone marrow cellularity, prior to analysis [15]. For quantification of lung fibrosis, images 
containing large bronchi and vessels were manually excluded from the original images [16].

As Inception-v3 model showed the effective classification when the image size was 299 × 
299, 151 × 151 and 79 × 79 [13], we cropped the image sized as 79 × 79 pixel in this study. 
During the processing of images, it seemed that resizing images might have affected image 
resolution, resulting in poor image quality, which might be related to low accuracy. For higher 
resolution, image resizing could be minimized and an image editor that can handle large-ca-
pacity images should be prepared.

In this study, the staining intensity, contrast and threshold were not adjusted, because it 
might induce potential artifact or possible processing noise during processing of images. For 
detection of tissue components, it is important to retain careful control of algorithm, image 
size, staining procedures and so on. Considering the time and manual labor needed for image 
processing, it is highly recommended to develop a commercial and user-friendly deep learning 
algorithm. This will provide opportunities for pathologists to use deep learning-based applica-
tions to save time and improve reading quality [17].

Taken together, we confirmed that Inception-v3 was applicable to classify rat chondrocytes 
and non-chondrocytes in knee joints in H&E stained slides. This promising approach will al-
low the rapid and accurate analysis of tissue characteristics including chondrocytes.
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