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The young shoots of Aralia elata, Chaenomeles sinensis 
fruit and Glycyrrhizae radix are edible and traditionally 
used as anti-inflammatory and antioxidant agents. The 
present study was performed to investigate the protective 
effect of an ethanol extract mixture of these three medi-
cinal plants (ACG) against amyloid β protein (Aβ) (25–
35)-induced memory impairment in an ICR mouse mo-
del. Memory impairment was induced by intracerebro-
ventricular microinjection of 15 nmol Aβ (25–35) and 
assessed using the passive avoidance test and the Morris 
water maze test. The step-through latency in the passive 
avoidance test was decreased and the latency to reach 
the hidden platform in the Morris water maze test was 
increased in mice treated with Aβ (25–35), indicating 
memory impairment. This memory impairment induced 
by Aβ (25–35) was significantly prevented by chronic 
treatment with ACG (10, 25, and 50 mg/kg, p.o., 8 
days). In memory impaired mice brain, cholinesterase 
activity and concentration of thiobarbituric acid reactive 
substance, a lipid peroxidation marker, were increased 
and glutathione level was decreased. These biochemical 
changes in Aβ (25–35)-treated mice were reversed by 
chronic administration of ACG. The present results su-
ggest that antioxidant and anti-cholinesterase activities of 
ACG might be responsible for the inhibition of Aβ (25–
35)-induced memory impairment and that ACG prepara-
tion may have a therapeutic role in preventing the pro-
gression of Alzheimer’s disease.
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Introduction

Alzheimer’s disease (AD) is a multifactorial neurodege-
nerative disorder with progressive and devastating memory 
impairment. The AD patient brain is characterized by 
amyloid β protein (Aβ) deposits, neurofibrillary tangles 
and loss of basal forebrain cholinergic neurons [1]. Both 
in vivo and in vitro studies have reported the toxic 
effects of Aβ or Aβ peptide fragments in brain sugges-
ting an important role of Aβ in the pathogenesis of AD 
[2]. The mechanisms underlying Aβ neurotoxicity are 
complex but may involve oxidative stresses associated 
with reactive oxygen species (ROS) generation and dec-
reased levels of glutathione (GSH) and superoxide dis-
mutase (endogenous antioxidants). Aβ has been reported 
to produce hydrogen peroxide and lipid peroxide in 
neurons [3], superoxide in microglia [4] and proinflam-
matory cytokines [5]. This Aβ-induced oxidative stress is 
indexed by protein oxidation, lipid peroxidation, DNA 
oxidation, and neuronal cell death [6–8]. Therefore, anti-
oxidants such as ⍺-tocopherol and anti-inflammatory 
agents such as indomethacin reportedly slow the progre-
ssion of AD [9, 10].

Aralia elata Seem (Araliaceae) is widely distributed in 
oriental countries such as Korea, Japan and China. The 
young shoots of Aralia elata are a popular edible plant 
in the spring. Several bioactive constituents such as 
saponins, alkaloids, glycosides, palmitic acid, and linoleic 
acid from Aralia elata have been reported to have 
anti-inflammatory and anti-oxidative effects and inhibit 
neurodegeneration [11–13]. Chaenomeles sinensis (Thouin) 
Koehne fruit (Rosaceae) is a valuable source of health 
food and Chinese medicine. Chaenomeles sinensis fruit is 
rich in dietary fibre, organic acids and bioactive penta-
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cyclic triterpene acids such as oleanolic acid and ursolic 
acid and large amounts of bioactive phenolic acids and 
vitamin C [14, 15]. These compounds are related to anti- 
inflammatory and antioxidant effect of Chaenomeles 
sinensis fruit [16–18]. Phytochemical researches have re-
vealed that the major constituents of Glycyrrhizae radix 
(Leguminosae), the root of Glycyrrhiza uralensis, are fla-
vonoids and triterpenoid saponins, which possess diverse 
pharmacological properties such as anti-ulcer, anti-inflam-
matory, antispasmodic, antioxidation, anti-cancer, anti-de-
pression and memory enhancement [19–24].

In previous reports, Chaenomeles sinensis fruit was 
demonstrated to show neuroprotective effects against Aβ 
(25–35)-induced neurotoxicity in in vivo and in vitro 
[25]. Glycyrrhizae radix prevented Aβ (25–35)-induced 
neurotoxicity in cultured neurons [26]. Glycyrrhizae radix 
have been proved for its memory-enhancing effect and its 
anticholinesterase activity [23, 27]. Studies have reported 
neuronal protective effects of Aralia elata in some ani-
mal models [13, 28]. Therefore, it was hypothesized that 
mixture of these three plants, possessing anti-oxidant and 
anti-inflammatory activities, might show more effective 
and synergistic neuroprotective effect with the reduction 
of possible individual toxicity due to large quantity. The 
present study was conducted to confirm the inhibitory 
effect of an ethanol extract mixture of Aralia elata, 
Chaenomeles sinensis fruit, and Glycyrrhizae radix, which 
was named as ACG, on memory impairment induced by 
a single intracerebroventricular (i.c.v.) injection of Aβ 
(25–35) in mouse model of AD-type amnesia [29].

Materials and Methods

Plant materials and extraction and reagents

The dried and sliced Chaenomeles sinensis fruit and 
Glycyrrhizae radix were purchased from Daegu Oriental 
Pharm at Daegu, Korea. The young shoots of Aralia 
elata were collected at Keryong Mountain in Daejeon, 
Korea. These plants were identified by Dr. Bangyeon 
Hwang, Chungbuk National University. Each 200 g of 
the three plants was mixed, extracted with 95% ethanol 
(3 L × 24 h × 3) at room temperature and filtered through 
filter paper (Advantec MFS, CA, USA). The filtrate was 
concentrated under reduced pressure using a rotary eva-
porator (Heidolph Instruments GmbH & Co,. Schwabach, 
Germany) to yield an ethanol extract (ACG, 55 g), which 
was then stored at room temperature until required. Aβ 
(25–35) was purchased from Bachem (Bubendorf, Swi-
tzerland). Acetylthiocholine iodide and 5,5’-dithiobis-2- 
nitrobenzoic acid (DTNB) were purchased from Sigma 
Chemical (St. Louis, MO, USA). Thiobarbituric acid 
(TBA) was purchased from Tokyo Kasei Kogyo (Tokyo, 

Japan). 

Experimental animals

Male ICR mice (5-week-old) were supplied by Daehan 
BioLink (Chungbuk, Korea) and housed in an environ-
mentally controlled room at 22 ± 2℃ and 55 ± 5% RH 
under a 12-h light/dark cycle with ad libitum access to 
food and water. Mice were allowed to adapt to the expe-
rimental environment for a week. 

Induction of memory impairment in mice and ad-

ministration of ACG 

Memory impairment was induced by i.c.v. injection of 
15 nmol of the aggregated form of Aβ (25–35), as pre-
viously described [2]. ACG was administered orally 30 
min before Aβ (25–35) injection on experimental day 1 
(ED1) and then further administered daily for 7 days (to 
ED8). ACG was suspended in distilled water. Sham- 
controls were injected i.c.v. with physiological saline 
instead of 15 nmol of Aβ (25–35). Mice were randomly 
divided into five groups ; sham-operated (the sham 
control group), the 15 nmol Aβ (25–35) group, the 15 
nmol Aβ (25–35) + 10 mg/kg ACG group, the 15 nmol 
Aβ (25–35) + 25 mg/kg ACG group, and the 15 nmol A
β (25–35) + 50 mg/kg ACG groups. Distilled water as 
vehicle was administered orally to the sham control and 
Aβ (25–35) control groups using the same schedule as 
ACG administration.

Memory assessment

Passive avoidance test was performed using a two- 
compartment shuttle chamber device (Avoidance System 
version 1.1, B. S Technolab, Seoul, Korea), one chamber 
was illuminated and the other was unlit and equipped 
with a grid floor and shock generator [2]. Thirty minutes 
after administering ACG on ED8, the mice were trained 
to perform the step-through passive avoidance task with 
the electric shock system activated (0.5 mA, 3 s; the 
acquisition trial). Retention trials were performed 24 h 
after the acquisition trial and the step-though latencies 
were recorded (maximum test time was set at 300 s).

A Morris water maze test was performed to measure 
spatial learning and memory of the mice according to the 
Morris method [30] with slight modification. The experi-
mental apparatus consisted of a circular water tank (90-cm 
diameter, height of 40 cm) filled with water (25 ± 2℃) 
to a depth of 30 cm. An escape platform with an 8-cm 
diameter was submerged 1 cm below the surface of the 
water and placed in the middle of the same quadrant 
throughout the training phase. Mice were pretested in 
same condition prior to ACG and/or Aβ (25–35) injec-
tion to identify the similar ability to find hidden platform 
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on ED1. Mice were allowed 4 training trials per day 
after ACG administration for 5 consecutive days (from 
ED4 to ED8). For each trial, the mice were placed into 
the water from one of the four starting points on the 
edge of the tank. The time required to escape onto the 
hidden platform was recorded. If the mouse located the 
platform, it was allowed to remain there for 10 s. If the 
mouse failed to find the platform within 120 s, it would 
be gently guided to the platform where it was allowed to 
stay for 10 s, and the escape latency was recorded as 
120 s.

Measurement of cholinesterase activity and oxida-

tive stress in mouse brain 

After the passive avoidance test retention trial on ED9, 
mice were deeply anesthetized with diethyl ether, brains 
were quickly removed, and brain homogenates were pre-
pared using five volumes of 0.1 M phosphate buffer (pH 
7.4) in ice bath. Cholinesterase activity and levels of 
reduced GSH in mouse brain were determined spectro-
photometrically using Ellman reagent [31]. Acetylthio-
choline iodide was used as a substrate to measure choli-
nesterase activity. Extent of lipid peroxidation was assa-
yed by measuring TBA reactive substance (TBARS) le-
vels at 532 nm as described by Yoshioka et al. using 
1,1,3,3-tetramethoxypropane as a standard [32]. Protein 
concentrations were determined using Lowry’s method 
[33]. 

Statistical analysis

Results are presented as means ± S.E.M. The signifi-
cances of differences were assessed by one-way analysis 
of variance (ANOVA) followed by Tukey’s tests. p- 
values of <0.05 were considered significant.

Results

Inhibitory effect of ACG on Aβ (25–35)-induced 

memory impairment in mice

In the initial acquisition trial of the passive avoidance 
task, the step-through latency did not differ among the 5 
groups. However, in the retention trial, step-through la-
tency in the Aβ (25–35)-control group was significantly 
shorter than that in the sham control group (49.7 ± 25.5 
s versus 275.8 ± 14.5 s) indicating that Aβ (25–35) had 
induced memory impairment. Mice administered ACG 
daily 8 days showed significant memory improvements 
(162.7 ± 34.0, 202.7 ± 22.5 and 269.2 ± 14.4 s for 10, 
25, and 50 mg/kg, respectively (Fig. 1). 

During the first trials using the Morris water maze test, 
latency time required to reach the hidden platform did 

not significantly differ among all the groups. The sham 
mice rapidly learned the location of the hidden platform, 
reaching it within 30 s on ED5 compared to the first 
trials (110.3 ± 6.1 s). Mice that received Aβ (25–35) 
showed a significantly delayed escape latency time from 
ED5 to ED8 compared to that of the sham-control group, 
indicating that Aβ (25–35) caused remarkable cognitive 
deficit. In contrast, chronic administration of ACG (10, 
25, and 50 mg/kg) significantly decreased the Aβ (25–
35)-induced prolonged latency time (ED5, 6, 7, and 8; 
Fig. 2). 

Inhibitory effect of ACG on Aβ (25–35)-induced 

increase of cholinesterase activity

Cholinesterase activity in the brains of mice in the Aβ 
(25–35)-treated group was significantly higher than that 
in the sham control group (9.3 ± 0.5 μmol/h/mg protein 
versus 5.1 ± 0.3 μmol/h/mg protein). The increased cho-
linesterase activity was significantly inhibited by 25 and 
50 mg/kg ACG, showing 7.5 ± 0.2 and 7.2 ± 0.3 μ
mol/h/mg protein, respectively (Table 1).

Inhibitory effect of ACG on Aβ (25–35)-induced 

GSH depletion and lipid peroxidation 

GSH contents of the brains from Aβ (25–35)-treated 
mice was significantly lower compared to that of the 
sham group. ACG (25 and 50 mg/kg) inhibited the 
decrease of GSH levels in Aβ (25–35)-treated brains. 
TBARS concentration in the brain of Aβ (25–35)-treated 
mice significantly increased compared to that of the sham 
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Fig. 1. Inhibitory effect of ACG on Aβ (25–35)-induced me-
mory impairment in mice. Learning and memory performance 
were assessed using the passive avoidance test (n = 10 – 12). 
Values are expressed as means ± S.E.M. ## p<0.01 vs. sham 
control; * p<0.05 and ** p<0.01 vs. 15 nmol Aβ (25–35) 
control.
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group. ACG (25 and 50 mg/kg) suppressed the elevation 
of TBARS concentration induced by Aβ (25–35) (Table 2).

Discussion

Aβ peptides (1–40 and 1–42 amino acid), cleaved from 
amyloid protein precursor, are the major constituents of 
senile plaques occurring in AD and playing a critical role 
as the principal toxic species to neuronal cell death and 
breakage of neurite [34]. The 11 amino acid sequence Aβ 
(25–35) exhibits neurotoxic properties of full-length se-

quence Aβ (1–42) [35]. It is widely acknowledged that 
mice i.c.v. injected with Aβ (25–35) can mimic some 
cognitive deficits in AD [36, 37], showing memory im-
pairment in different behavioral paradigms such as Morris 
water maze and passive avoidance tests [38, 39]. In the 
present study, i.c.v. injection of Aβ (25–35) to mice pro-
duced memory impairment in the passive avoidance test 
and Morris water maze test. Chronic treatment with ACG 
effectively protected the mice against Aβ (25–35)-indu-
ced memory deficit. 

Cholinergic transmission is crucial to learning and me-
mory, and its alteration is considered main causes of 
cognitive disorder in AD. I.c.v. injection of Aβ (25–35) 
in rats resulted in learning and memory deficits that were 
accompanied by reduction of choline-acetyltransferase ac-
tivity [40]. Accumulation of Aβ in AD brain is associa-
ted with elevation of cholinesterase and results in learning 
and memory deficits [41]. Thus, some cholinesterase in-
hibitors, tacrine (Cognex®) and donepezil (Aricept®), have 
been used for the treatment of AD [41–43]. In the pre-
sent study, the cholinesterase activity in brain tissue was 
increased in Aβ (25–35)-treated mice, and ACG (25 and 
50 mg/kg) significantly inhibited the increase of choline-
sterase. This result suggests that ACG could ameliorate 
memory impairment by inhibiting cholinesterase activity. 

Studies have suggested that oxidative stress is respon-
sible for the onset of the cognitive dysfunction during 
the progression of AD [3, 4, 7, 44]. Extracellular Aβ 
accumulation may directly or indirectly alter N-methyl- 
D-aspartic acid (NMDA) type glutamate receptor-media-
ted cytosolic increases in Ca2+, which is rapidly taken up 
by mitochondria and endoplasmic reticulum. Ca2+ over-
load of mitochondria causes ROS generation [45], and 
excessive production of ROS and impairment of the ROS 
removal system in the AD brain result in protein, nucleic 
acid, and neuronal membrane lipid damage, which in 
turn, cause neuronal cell death [46]. Therefore, a number 
of antioxidants have been reported to protect cells from 
Aβ (25–35)-induced toxicity [9, 47, 48]. GSH, a major 
intracellular antioxidant, plays a key role in the removal 
of ROS and protection of cells from oxidative stress. 
GSH level, thus, is the first indicator for oxidative stress 
in the brain [49]. TBARS level, commonly used as lipid 
peroxidation marker, has been elevated in the AD brain 
tissue [44]. In the present study, brain GSH contents in 
the Aβ (25–35)-treated group were significantly reduced, 
and ACG administration significantly prevented these 
decreases. Additionally, Aβ (25–35)-induced increase in 
TBARS concentration was significantly decreased by ad-
ministration of ACG. 

The three constituent plants of ACG and their active 
principles have been reported for neuroprotective activi-
ties. It is well known that Aralia elata contains antioxi-
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Fig. 2. Inhibitory effect of ACG on Aβ (25–35)-induced spatial 
memory impairment in mice. The spatial learning and memory 
performance were assessed using a Morris water maze test (n 
= 7–9). Values are expressed as means ± S.E.M. # p<0.05 and 
## p<0.01 vs. sham control; * p<0.05 and ** p<0.01 vs. 15 
nmol Aβ (25–35) control.

Table 1. Effect of ACG on brain cholinesterase activity in Aβ 

(25 35)-treated mouse brain

Group Dose (mg/kg) Cholinesterase activity 
(μmol/h/mg protein)

Sham - 5.1 ± 0.3

Aβ (25–35) 15 nmol/animal  9.3 ± 0.5##

+ ACG 10 8.8 ± 0.2 

+ ACG 25  7.5 ± 0.2**

+ ACG 50  7.2 ± 0.3**

Cholinesterase activities in mouse brain homogenates were 
measured after the passive avoidance test retention trial. Values 
are expressed as the means ± S.E.M. of acetylthiocholine 
concentrations hydrolyzed by cholinesterase preparation of 
brain homogenate for 1 h (n = 6 mice/group). ## p<0.01 vs. 
sham control, ** p<0.01 vs. 15 nmol Aβ (25–35) control. 
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dants, such as congmuyanosides, echinocystic acid and 
oleanolic acid [12, 50]. Ethyl acetate fraction from Aralia 
elata (100 mg/kg) improved learning, memory ability, 
and spatial cognition through inhibition of cholinesterase 
activity and antioxidant effect [51]. Chaenomeles sinensis 
fruit is rich in antioxidant components such as flavonoids, 
phenolics, total triterpenes, and vitamin C [52]. In a pre-
vious report, we demonstrated that Chaenomeles sinensis 
fruit has protective effect on Aβ (25–35)-induced neuro-
toxicity in in vitro and in vivo [25]. Chaenomeles sinensis 
fruit inhibited Aβ (25–35)-induced increase of intracellu-
lar Ca2+ concentration ([Ca2+]i), ROS generation, and, in 
result, neuronal death in cultured neurons. Furthermore, 
Chaenomeles sinensis fruit (50 mg/kg) suppressed Aβ 
(25–35)-induced increase of brain cholinesterase activity 
and memory impairment. Glycyrrhizae radix contains 
many licorice flavonoids including liquiritin, isoliquiritin, 
liquiritigenin and isoliquiritigenin [53]. Glycyrrhizae radix 
and isoliquiritigenin prevented Aβ (25–35)-induced neu-
ronal apoptotic death by interfering with the increases of 
[Ca2+]i and ROS in cultured cortical neurons [26]. Me-
mory enhancing activity of Glycyrrhizae radix in mice 
was shown at dosage of higher than 150 mg/kg [23, 54]. 
Maximal effect of ACG was shown at the lower dosage 
(50 mg/kg) than the sum of maximal effect dosage of 
each plant. Therefore, it is suggested that the preparation 
of ACG might reveal synergistic effect of three medi-
cinal plants in protection of Aβ-induced memory impair-
ment through the inhibition of ROS generation and cho-
linergic dysfunction. Abundant antioxidants contained in 
this preparation might be responsible for the prevention 
of Aβ (25–35)-induced neurotoxicity. In conclusion, it is 
evident that ACG could provide a marked protection 
against Aβ (25–35)-induced memory deficit. This result 
may explain the inhibitory action of ACG on the pro-
gression of AD. 
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