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The incidence of stomach cancer has been found to be 
gradually decreasing; however, it remains one of the 
most frequently occurring malignant cancers in Korea. 
According to statistics of 2017, stomach cancer is the 
top cancer in men and the fourth most important cancer 
in women, necessitating methods for its early detection 
and treatment. Considerable research in the field of bio-
informatics has been conducted in cancer studies, and bio-
informatics approaches might help develop methods and 
models for its early prediction. We aimed to develop a 
classification method based on deep learning and demon-
strate its application to gene expression data obtained 
from patients with stomach cancer. Data of 60,483 genes 
from 334 patients with stomach cancer in The Cancer 
Genome Atlas were evaluated by principal component 
analysis, heatmaps, and the convolutional neural network 
(CNN) algorithm. We combined the RNA-seq gene ex-
pression data with clinical data, searched candidate genes, 
and analyzed them using the CNN deep learning algorithm. 
We performed learning using the sample type and vital 
status of patients with stomach cancer and verified the 
results. We obtained an accuracy of 95.96% for sample 
type and 50.51% for vital status. Despite overfitting owing 
to the limited number of patients, relatively accurate re-
sults for sample type were obtained. This approach can 
be used to predict the prognosis of stomach cancer, which 
has many types and underlying causes.
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Introduction

In the early stages of stomach cancer, variations in cel-
lular genes arise as a result of genetic and environmental 
factors. These variations then lead to abnormal protein 
expression and eventually, abnormalities in cell physiology, 
cell division, etc. Stomach cancer causes post-transcrip-
tional modifications, which alter overall functionality not 
only by genetic variation but also via increased or de-
creased expression of specific proteins [1]. The incidence 
of stomach cancer has recently been found to be decreas-
ing gradually. However, it remains the most frequent 
malignancy in Korea. According to global data, the in-
cidence of stomach cancer is higher in Asia compared 
with Europe or America. According to 2017 statistics, the 
incidence of stomach cancer remains high, ranking first 
in men and fourth in women, highlighting the importance 
of its early detection and treatment [2]. Progress has been 
made in methods that can detect stomach cancer by not 
only early diagnosis, but also simple checks. The reported 
trend of lowering rates of stomach cancer indicates the 
role of early detection through endoscopic methods as a 
result of advancements in medical techniques. This ex-
plains the drastic drop in the death rate statistics com-
pared with the incidence rate of stomach cancer [3]. In 
particular, when stomach cancer is detected at an early 
stage and is actively treated, the prognosis improves [4].

Genes related to stomach cancer are potential targets for 
cancer treatment and can serve as important biological 
markers to determine not only diagnosis or prognosis but 
also response to treatment. Accordingly, it is necessary 
to detect candidate genes and study their expression in 
terms of stomach cancer [1]. Because of the dissemination 
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and proliferation of the next-generation sequencing (NGS) 
technique, the amount of genomic data is increasing 
exponentially. As the volume of data is increasing, it is 
possible that important features that might be missed by 
general approaches based on statistical analysis are dis-
covered based on machine learning algorithms in artifi-
cial intelligence [5, 6]. The application of convolutional 
neural network (CNN) - a deep learning algorithm having 
the best performance in image classification of clinical and 
biological data - can enable the discovery of new bio-
markers that can be used for the early diagnosis and pre-
diction of prognosis of stomach cancer [7, 8]. It can also 
be applied extensively to a variety of basic, clinical, and 
medical big data [9]. In this study, after discovering can-
didate genes that influence stomach cancer by principal 
component analysis (PCA) using RNA-seq data from The 
Cancer Genome Atlas (TCGA), a public cancer database, 
we developed a classification model using the CNN algo-
rithm. Using this model, we predicted the diagnosis, vital 
status, and sample type and estimated the classification 
accuracy.

The stomach is an important organ for digestion, and 
mucous membranes on the walls of the stomach protect 
stomach cells. Stomach cancer typically develops in this 
mucous membrane (95%), and the stage is determined 
according to the layer where cancer cells have penetrated. 
According to TCGA and Asian Cancer Research Group 
(ACRG) data sets, stomach cancer is categorized into four 
different types, which are associated with prognosis and 
have distinct clinical properties. The four genetic types 
are as follows: genetically unstable type (50%), micro-
satellite instability with high genetic methylation (22%), 
genetically stable type (20%), and Epstein–Barr virus type 
(9%). However, in the case of stomach cancer, relatively 
little is known about the genetic variation related to the 
etiopathogenic mechanism compared with other kinds of 
cancer. Accordingly, few targeted therapies and biomarkers 
have been developed [10, 11]. Recent studies have 
shown that microRNAs are related to cancer occurrence 
in a variety of cancer types. Generally, although messenger 
RNAs (mRNAs) are composed of thousands of nucleo-
tides, microRNAs consist of 20–22 nucleotides. MicroRNAs 
and mRNAs function complementarily and control mRNA 
expression in cells, which is involved in cancer develop-
ment and progression [12]. Many RNAs do not produce 
proteins, including microRNAs, some of which control 
gene expression [13, 14]. Accordingly, tracing variation at 
the level of gene expression, identifying important gene 
variation associated with cancer, and constructing pre-
diction models based on genetic variation make it possible 
to predict the frequency and occurrence of stomach cancer 
by simple checks [15, 16]. Accordingly, in this study, we 
combined RNA-seq gene expression data for stomach 

cancer obtained from TCGA (an open database with clin-
ical data), searched for candidate genes, and analyzed 
these genes using a deep learning algorithm. In partic-
ular, we selected candidate genes that can distinguish be-
tween healthy individuals and patients with cancer by 
PCA, produced a heatmap that represents the expression 
of candidate genes to construct a model, and applied the 
CNN classification algorithm. Furthermore, we developed 
a classification model for survival according to the level 
of RNA-seq–based gene expression.

Materials and Methods

Material

Data for 334 patients with cancer were obtained from 
TCGA, a worldwide cancer database. The transcription 
profiling file, as well as case files, including sample in-
formation and clinical information, were used [17]. Next, 
clinical data, expression data, and case data were combined 
into a single file based on case ID and file name using 
Python. The final data set included 334 samples and 
60,483 genes.

Methods

We used MATLAB as experimental tool to analyze the 
data obtained from TCGA To extract features, PCA was 
used. The extracted features were used to generate a heat-
map, and learning was performed using the CNN algo-
rithm, a deep learning approach [18–20].

PCA

PCA is a widely applied technique for dimensionality 
reduction, data compression, feature extraction, data visu-
alization, etc. In this study, PCA was used to extract fea-
tures related to gene expression with major differences 
among samples. The observed value is a vector x of di-
mension D, and the data set that is the object of PCA is 
defined as {xn}, n = 1, 2, · · ·, N. The purpose of PCA 
is to determine the principal subspace with M < D di-
mensions, which maximizes the variance of the projected 
data. The representation of the observed value in this 
principal subspace becomes a feature vector of observed 
values. To determine the subspace that satisfies the con-
ditions, we defined the sample mean x̄ and data covariance 
matrix S as follows.

(1)

(2)

Using the definitions in (1) and (2), we defined the unit 
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Fig. 1. Structure of the convolutional neural network.

vector u_i on the principal subspace that maximizes the 
variance of a given data set as follows.

(3)

That is, the vector that maximizes the variance of the 
projected data becomes an eigenvector, ui, of matrix S, 
and the size of the maximal variance in the direction of 
the eigenvector becomes the eigenvalue λi. Accordingly, 
the principal subspace composed of the principal compo-
nent derived from PCA is composed of an eigenvector of 
M pieces of maximal eigenvalues for matrix S. In addi-
tion, the feature vector value derived from the observed 
values of xn is given as a coefficient that represents a 
linear combination with M pieces of the eigenvector for 
the principal subspace.

CNN

CNN is garnering increasing attention in the area of 
deep learning targeting image data. It has the ability to 
detect the correlation between adjacent pixels in an im-
age and retain invariance with respect to changes in scal-
ing, such as parallel translation, expansion, and reduc-
tion, which are frequently produced in image data. 
Owing to these strengths, based on CNN images, the ap-
proach is extensively applied, e.g., in the recognition of 
handwriting and the recognition of objects, logos, and 
features in images. A typical CNN structure is shown in 
Fig. 1.

The structure has repeated layers, such as the convolu-
tional layer, which measures the weighted moving sum; 
the nonlinearity layer, which is composed of an activation 
function; and a sub-sampling layer, which applies spatial 
reduction to image data. It also has a neural network layer 
with a fully connected structure and a Softmax layer, 
which represents the probability of classification. In the 
convolutional layer, it performs the convolution calculation, 
which measures the weighted moving sum for a rectan-
gular area, and the filter size, where the rectangular area 

proceeds by the stride length. Finally, the result is gen-
erated according to the filter number. Next, the result of 
the convolutional layer becomes the input for the non-
linearity layer activation function; in the case of CNN, it 
uses the rectified linear unit (ReLU) function, which im-
proves the efficiency of gradient calculation using back- 
propagation. Subsequently, a sub-sampling is used to reduce 
the dimension of feature values using max pooling, which 
chooses a feature value that is the greatest stimulus in 
the rectangular area with a fixed size. The layers, such as 
the convolutional layer, nonlinearity layer, and sub-sam-
pling layer, are connected repeatedly and produce a fea-
ture vector for the input image. To perform learning using 
the feature vector, the layers connect the neural network 
with the fully connected structure. By learning, weighted 
values that connect each neuron are adjusted to the value 
that minimizes the sum of square of classification errors. 
Finally, the Softmax layer represents the classification 
probability for the input image.

HeatMap

A heatmap is a visual representation of each matrix ele-
ment using colors for the two-dimensional representation 
of data matrix values. Here, large values are represented 
as small rectangles or pixels with a dark color, and small 
values are represented as bright colors. Because heatmaps 
are useful for visualization, with a variety of potential 
color schemes according to the application, they have ex-
tensive applications, e.g., for analyses of web page visits, 
gene expression data, and data visualization. In this study, 
a heatmap was used to convert the feature vector ob-
tained by PCA into image information needed for CNN.

Results

The whole processing procedure for the deep learning 
system for gene expression data is summarized in Fig. 2 
We eliminated noise and singular values and performed 
normalization for PCA in the preprocessing steps. For 
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Fig. 2. Processing steps of the classification system based on 
the deep learning algorithm.

Fig. 3. Resultant HeatMap examples of gene expression data.

the PCA, X conforms to D = 60,483 and N = 334 as a 

D × N dimensional matrix. Each row of matrix X repre-
sents the observed value for one patient, and each col-
umn represents the gene expression information for the 
patient. By PCA, we calculated 333 principal compo-
nents for each observed value and selected 320 principal 
components according to the size for subsequent process-
ing. Subsequently, after generating a 16 × 20 matrix, we 
converted this matrix into a 64 × 80 HeatMap image and 
input the image into CNN. Fig. 3 shows an example of 
a HeatMap image for the observed values produced using 
the HeaTmap function of MATLAB. Fig. 4 shows the struc-
ture of CNN for learning.

In the case of primary tumor (PT) for sample type, as 
shown in Fig. 3, the pixels are biased toward the left-hand 
side with a yellow background. However, in case of solid 
tissue normal (STN), a line of blue pixels is widely dis-
tributed. For live and dead cases (i.e., the vital status 
category), a similar pattern was detected. These results 
indicated that principal components for gene expression 
extracted from PCA differed with respect to image and 
color among categories. Next, Fig. 4 shows the CNN struc-
ture for different learning steps.

Layers such as convolutional, nonlinear activation 
(ReLU), and subsampling (Max pooling), are repeated 
thrice after passing through two fully connected layers, 
and Softmax values are outputs. Moreover, to avoid over-
fitting in the neural network, dropout with a probability 
of 0.5 was inserted between fully connected layer 1 (FC1) 
and fully connected layer 2 (FC2).

The detailed structure of the CNN and hyperparameter 
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Fig. 4. CNN (convolutional neural network) structure for deep learning.

Sample type
Predicted class

PT STN

Actual class
PT 92 5

STN 0 2

Vital status
Predicted class

Alive Dead

Actual class
Alive 44 19

Dead 26 10

PT, primary tumor; STN, solid tissue normal.

Table 1. Experimental results for classification systemvalues that influence learning at each stage are as follows.

1. Convolutional layer: Filter size (3),
Filter number (8), Padding = 1
ReLU + Maxpooling: size (2), Stride = 2

2. Convolutional layer: Filter size (3),
Filter number (16), Padding = 1
ReLU + Maxpooling: size (2), Stride = 2

3. Convolutional layer: Filter size (3),
Filter number (32), Padding = 1

4. FC1: Output (64)

5. FC2: Output (2)

We used 234 randomly selected data points (70% of 
the whole data set) for learning, and the learning options 
were set to 40 for Epoch and 32 for MiniBatchSize.

Recognition result about 333 of data except one miss-
ing value among 334 of data is shown in Table. 1. 

Table 1 shows the verification results for 99 datapoints, 
i.e., 30% of the whole data set. For distinguishing be-
tween the sample types PT and STN, the accuracy was 
95.96%, and the accuracy was greater for PT than for 
STN. With respect to vital status (i.e., alive and dead), 
the accuracy was 50.51%, which was lower than the ac-
curacy for sample type. Accordingly, we found that the 
differences in gene expression with respect to sample 
type are distinct from those for vital status. In both cas-
es, the accuracy of the validation data is lower than the 
accuracy for the learning data. This indicates that over-
fitting resulted from the small sample size (N = 333) and 

high dimensionality (D = 60,483) of the gene expression 
data. Accordingly, it is possible to resolve the overfitting 
issue and improve the generality of the method by ob-
taining gene expression data from more patients.

Discussion

In this study, we performed feature classification of 
stomach cancer using gene expression data of TCGA. 
First, applying the PCA method, we selected candidate 
genes that are principal components explaining gene ex-
pression data of stomach cancer. We converted selected 
candidate gene expression information corresponding to 
principal components into heatmap images and measured 
the accuracy of prediction of representative prognosis of 
stomach cancer patients using the CNN algorithm in 
deep learning. A classification was obtained by PCA, and 
the prediction accuracy using deep learning was lower 
than the accuracy of recognition problems, such as number 
recognition. This can be explained by the wide variety of 
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causes of stomach cancer. The disease may be too com-
plex to explain using simple gene expression variation. 
Studies on stomach cancer biomarkers have been con-
ducted, including synthetic literature reviews, leading to 
the discovery and classification of causal variants directly 
relevant to stomach cancer or rare variants with low 
frequencies. In the future, based on these results, analyses 
of the functions of candidate genes and correlations in 
expression based on deep learning and big data may fa-
cilitate the early detection of stomach cancer and the de-
velopment of treatment approaches and methods to predict 
prognosis.

Conclusion

We performed learning using the sample type and vital 
status of patients with stomach cancer and verified the 
results. With further improvements in this method using 
more data, this approach can be used to predict the prog-
nosis of stomach cancer.
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