
Actinidia arguta (Actinidiaceae), which is commonly 
referred to as hardy kiwifruit, has been reported to pos-
sess anti-inflammatory, anti-allergic and antioxidative 
properties. The protective effect of the leaves and stems of 
A. arguta against amyloid β protein (Aβ) (25-35)-induced 
cultured neuronal cell death and memory impairment was 
investigated in the current study. Exposure of cultured cor-
tical neurons to 10 μM Aβ (25-35) for 24 h induced signifi-
cant neuronal death as assessed by a 3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and 
Hoechst 33342 staining. However, A. arguta (10 and 50 μg/
ml) prevented Aβ (25-35)-induced apoptotic neuronal death 
in cultured cortical neurons. A. arguta also inhibited the 100 
μM H2O2-induced decrease of the MTT reduction rate in 
cultured neurons. Memory impairment was produced by 
intracerebroventricular microinjection of 15 nmol Aβ (25-
35) and examined using the passive avoidance test in ICR 
mice. Chronic treatments with A. arguta (50 and 100 mg/
kg, 14 days, p.o.) significantly prevented memory impair-
ment induced by Aβ (25-35), and A. arguta inhibited the 
Aβ (25-35)-induced increase of cholinesterase activity in the 
brains of memory impaired mice. These results suggest that 
A. arguta might be able to inhibit Aβ (25-35)-induced neu-
ronal death and memory impairment via antioxidative and 
anti-cholinesterase effects and that A. arguta could have a 
therapeutic role for preventing the progression of neurode-
generation in Alzheimer’s disease. 
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Introduction
Alzheimer’s disease (AD) is characterized by neuronal 
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loss and extracellular senile plaques, which primarily 
consist of β-amyloid protein (Aβ), a 39-43 amino acid 
peptide derived from amyloid precursor protein [1]. The 
deposition of Aβ in the pathogenesis of AD is invari-
ably associated with oxidative stress and inflammatory 
responses [2]. Antioxidants such as α-tocopherol protect 
against Aβ-induced cytotoxicity as well as against devel-
opment of learning and memory deficits [3]. Addition-
ally, anti-inflammatory agents such as indomethacin have 
been reported to slow the progression of AD [4]. Fur-
thermore, injection of Aβ (25-35) into the cerebral ven-
tricle of mice was found to result in learning and mem-
ory deficits that were accompanied by decreased choline 
acetyltransferase and increased cholinesterase activity, 
suggesting that accumulation of Aβ disrupts cholinergic 
activity and causes the cognitive impairments associated 
with AD [5].

Actinidia arguta (sieb. Et Zucc.) Panch (Actinidiaceae) 
is a smooth-skinned grape-sized kiwifruit native to Ko-
rea, northern China, Siberia and Japan. The fruits, leaves, 
stems and bark of A. arguta have traditionally been used 
for the treatment of inflammatory diseases and gastroin-
testinal diseases in Korea [6]. Moreover, A. arguta have 
been reported to possess anti-oxidant, antiapoptotic, anti-
inflammatory and anti-allergic properties [7-10], as well 
as to contain various anti-oxidants including catechins, 
vitamin C, carotenoids, chlorophyll, anthocyanin, and 
other polyphenols [11-14]. Antioxidative products are 
commonly regarded as potential neuroprotective agents 
because they improve a number of pathological pro-
cesses, including ROS formation and inflammation [15]. 
Therefore, this study was conducted to investigate the 
neuroprotective effects of the leaves and stems of A. ar-
guta in vitro using cultured neurons and in vivo in experi-
mental animals.
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Materials and Methods
Plant materials extraction and reagents

The leaves and stems of A. arguta were collected from 
Keryong Mountain in Daejeon, Korea and identified by 
Professor KiHwan Bae of the College of Pharmacy, Chun-
gnam National University, Korea. Dried leaves and stems 
of A. arguta (4 kg) were extracted three times with etha-
nol at room temperature for three days, filtered, and con-
centrated to yield an ethanol extract (300 g; yield: 7.5%), 
which was stored at room temperature until required. Aβ 
(25-35) was purchased from Bachem (Bubendorf, Swit-
zerland). 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tet-
razolium bromide (MTT), Dulbecco's modified Eagle's 
medium (DMEM), Joklik-modified Eagle's medium, 
hydrogen peroxide (H2O2) and poly-L-lysine were pur-
chased from Sigma Chemical Co. (St. Louis, MO, USA). 
Hoechst 33342 dye was purchased from Molecular 
Probes Inc. (Eugene, OR, USA). Fetal bovine serum was 
purchased from JRS Biosciences (Lenexa, KS, USA). 

Experimental animals
Pregnant Sprague-Dawley (SD) rats and male ICR mice 

were purchased from Daehan BioLink Co. Ltd. (Chun-
gbuk, Korea) and housed individually and in groups of 
10, respectively, in environmentally controlled rooms at 
22°C ± 2°C under a relative humidity of 55 ± 5% and a 
12-h light/dark cycle while provided with food and wa-
ter ad libitum. The procedures involving experimental 
animals complied with the animal care guidelines of the 
United States National Institutes of Health and the Ani-
mal Ethics Committee of Chungbuk National University.

Induction of neurotoxicity and analysis of neuronal 
viability in primary cultures of rat cerebral cortical 
neurons

Primary cortical neuron cultures were prepared using 
embryonic day 15 to 16 SD rat fetuses [16]. Neurotox-
icity experiments were conducted on neurons that had 
been grown for 4–6 days in culture. An Aβ (25-35) stock 
solution of 2 mM was prepared in sterile distilled wa-
ter, stored at -20°C, and incubated for more than 2 days 
at 37°C to aggregate before use. Cultured neurons were 
treated with 10 μM Aβ (25-35) in serum-free DMEM at 
37°C for 24 h to produce neurotoxicity. A. arguta (1, 10 
and 50 μg/ml) was applied 20 min prior to treatment with 
10 μM Aβ (25-35) and was also present in the medium 
during Aβ (25-35) incubation. To measure the H2O2-in-
duced neuronal death, cultured neurons were treated with 
100 μM H2O2 for 15 min in a HEPES-buffered solution 
containing HEPES (8.6 mM), NaCl (154 mM), KCl (5.6 
mM), and CaCl2 (2.3 mM) at pH 7.4. After exposure to 
H2O2, the neurons were washed and further incubated in 

H2O2-free and serum-free DMEM for 12 h (post-incuba-
tion). A. arguta (1, 10 and 50 μg/ml) was added 20 min 
prior to treatment with H2O2 and was also present in the 
buffer during the H2O2 incubation and post-incubation 
periods. A. arguta was dissolved in DMSO to a concen-
tration of 100 mg/ml, then further diluted in experimental 
buffers. The final concentration of DMSO was less than 
0.1%, which did not affect cell viability. At the end of 
the incubation period, an MTT assay and Hoechst 33342 
staining were performed to measure neuronal cell death 
and apoptosis, respectively, as previously described [16].

Measurement of memory impairment in mice 
Intracerebroventricular (i.c.v.) injection of the aggre-

gated Aβ (25-35) (15 nmol) was performed to induce 
memory impairment in mice, as previously described 
[17]. A. arguta (10, 25 and 50 mg/kg) suspended in dis-
tilled water was orally administered to 5-week-old ICR 
mice 30 min before Aβ (25-35) injection, then further ad-
ministered once daily for 13 days. A passive avoidance 
apparatus (Avoidance System Version 1.1, B. S. Techno-
lab Inc, Seoul, Korea) was used to measure memory ac-
quisition as previously described [17]. Mice were trained 
on a step-through passive avoidance task 30 min after 
administration of A. arguta on day 13 of i.c.v. injection 
of Aβ (25-35). A retention trial was given 24 h after the 
acquisition trial.

Measurement of brain cholinesterase activity 
Upon completion of the retention trial of the passive 

avoidance test, mice were anesthetized with diethyl ether 
and their brains were quickly removed. Brain homoge-
nates were then freshly prepared in an ice bath with a 15-
fold volume of a 0.1 M phosphate buffer containing 1% 
triton (pH 8.0). Cholinesterase activity in the brain was 
spectrophotometrically determined by the Ellman meth-
od [18] as modified by Padilla et al. [19]. Briefly, 5 μl of 
homogenate and 300 μl sodium phosphate buffer (0.1 M, 
pH 8.0) containing 0.3 mM DTNB (final concentration in 
assay 0.25 mM) were mixed, allowed to stand for 5 min, 
and then amended with 50 μl substrate solution (8.45 mM 
acetylthiocholine iodide; final 1.2 mM). The increase in 
the rate of absorbance was monitored for 5 min at 410 nm 
at 25°C in a microplate reader (TECAN Sunrise, GMBH, 
Austria). Cholinesterase activity was calculated using an 
extinction coefficient of 13.6 mM-1cm-1 for 5-thio-2-ni-
trobenzoic acid, and was expressed as μmol/h/mg protein 
after protein assay by Lowry's method [20]. 

Statistical analysis
Data were expressed as the means ± S.E.M. and sta-

tistical significance was assessed by one-way analysis 
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of variance (ANOVA) and Tukey’s tests. P values <0.05 
were considered significant.

Results
A. arguta inhibited Aβ (25-35)-induced neuronal 
cell death

Cultured cortical neurons exposed to 10 μM Aβ (25-35) 
for 24 h showed 62.0 ± 2.5% absorbance relative to the 
untreated controls in the MTT assay (Fig. 1), indicating 
that Aβ (25-35) caused neuronal cell death. Pretreatment 
of cortical neurons with 10 and 50 μg/ml A. arguta re-
duced the neuronal death induced by Aβ (25-35) (absor-
bance, 74.2 ± 3.1% and 84.4 ± 3.5% of control, respec-
tively; Fig. 1). 

An additional experiment was performed with Hoechst 
33342 staining to detect condensed or fragmented DNA, 
which is indicative of Aβ (25-35)-induced neuronal apop-
totic death. Treatment of neurons with 10 μM Aβ (25-35) 
induced apoptosis of 31.2 ± 1.4% of the total population 
of cultured cortical neurons, while only 11.0 ± 1.3% of 
the neurons in control cultures were aptotic. The addition 
of A. arguta (1, 10 and 50 μg/ml) significantly decreased 
the Aβ (25-35)-induced apoptotic cell death to 22.2 ± 1.4, 
19.7 ± 1.8 and 15.7 ± 1.7%, respectively (Fig. 2). 

A. arguta inhibited H2O2-induced neuronal cell 
death

Cultured cortical neurons exposed to 100 μM H2O2 for 
15 min showed 67.3 ± 1.0% absorbance relative to the 

untreated controls in the MTT assay (Fig. 3), indicat-
ing that H2O2 caused neuronal cell death. Pretreatment 
of cortical neurons with A. arguta (50 μg/ml) reduced 
the neuronal death induced by H2O2 (absorbance, 98.2 ± 
2.3% of control; Fig. 3).

A. arguta inhibited Aβ (25-35)-induced memory 
deficits in mice

In the acquisition trial of the passive avoidance task, 
step-through latency did not differ among the five groups 
(control, 15 nmol Aβ (25-35), 15 nmol Aβ (25-35) + 25 
mg/kg A. arguta, 15 nmol Aβ (25-35) + 50 mg/kg A. ar-
guta, 15 nmol Aβ (25-35) + 100 mg/kg A. arguta; data 
not shown). The step-through latency of the Aβ(25-35)-
treated group in the retention trial significantly decreased 
to 41.2 ± 13.2 s, while it was 251.5 ± 31.7 s in the con-
trol group, indicating that Aβ (25-35) induced memory 
impairment in mice. Chronically administered A. arguta 
markedly protected against the memory impairment in-
duced by Aβ (25-35). The step-through latency in groups 
administered A. arguta at doses of 25, 50 and 100 mg/kg 
was 114.0 ± 32.8, 226.8 ± 34.4 and 235.8 ± 32.2 s, respec-
tively (Fig. 4). Cholinesterase activity in brains exposed 
to 15 nmol Aβ (25-35) increased significantly; however, 
treatment with 100 mg/kg A. arguta led to a significant 
decrease in cholinesterase activity compared with the Aβ 
(25-35) group (Table 1). To determine if A. arguta treat-
ment affects general motor functions, we measured the 
spontaneous locomotor activity of the mice. Neither A. 
arguta nor Aβ (25-35) significantly influenced the loco-
motor activity (data not shown), indicating that the ob-

Fig. 1. Inhibitory effect of A. arguta on Aβ (25-35)-induced 
neuronal cell death in cultured cortical neurons. Neuronal cell 
death was measured by MTT assay. The MTT absorbance from 
untreated cells was normalized to 100%. Results are expressed 
as the means ± S.E.M. of data obtained from four independent 
experiments conducted in three to four wells. ##P<0.01 vs. con-
trol; *P<0.05, **P<0.01 vs. 10 μM Aβ (25-35).

Fig. 2. Inhibitory effect of A. arguta on Aβ (25-35)-induced 
apoptosis of cultured cortical neurons. Apoptotic cells meas-
ured by Hoechst 33342 staining were counted in three fields per 
well. The values represent the apoptotic cells as a percentage of 
the total number of cells and expressed as the means ± S.E.M. 
of data obtained from three independent experiments per-
formed in three wells. ##P<0.01 vs. control; *P<0.05, ** P<0.01 
vs. 10 μM Aβ (25-35).
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served memory improvement was not due to immobility 
that might be caused by A. arguta administration.

Discussion
Alzheimer’s disease is an irreversible neurodegenera-

tive disorder characterized clinically by the loss of cog-
nitive function and pathologically by the appearance of 
senile plaques and neurofibrillary tangles [21, 22]. Aβ 
peptides 1-40 and 1-42 amino acid, which are cleaved 
from amyloid protein precursor (APP), are the major 
constituents of senile plaques occurring in AD and play 
critical roles as the principal toxic species responsible 
for neuronal cell death and neurite breakage [23]. Many 
studies have reported that Aβ protein acts as a potent neu-

rotoxin both in vitro and in vivo [24]. Therefore, Aβ (25-
35) was used to induce neuronal cell death and assess the 
protective effects of A. arguta against neuronal cell death 
and memory impairment in the present study.

The results presented herein provide evidences that 
Aβ (25-35)-induced apoptotic neuronal death was pre-
vented by the leaves and stems of A. arguta. Specifi-
cally, MTT assay revealed that ethanol extract of the 
leaves and stems of A. arguta significantly inhibited Aβ 
(25-35)-induced neuronal cell death in cultured cortical 
neurons. A. arguta also significantly decreased the Aβ 
(25-35)-induced apoptosis of cultured neurons measured 
by Hoechst 33342 staining. Aβ-induced neurotoxicity 
has been attributed to Ca2+ influx followed by generation 
of reactive oxygen species (ROS) such as O2- and H2O2, 
which was blocked by treatment with Ca2+ antagonist and 
ROS scavenger [25, 26]. These studies suggest that the 
deposition of Aβ in the pathogenesis of AD is invariably 
associated with oxidative stress. Therefore, the preven-
tive effects of A. arguta against H2O2-induced cultured 
neuronal cell death were examined in the current study. 
The results revealed that A. arguta reduced H2O2-induced 
neuronal cell death, suggesting that the neuroprotective 
effects of A. arguta may be attributable to its antioxidant 
activity.

Aβ (25-35) preferably induces impairments of spatial 
and non-spatial short-term memory, and these effects 
remain evident for up to 6 months after even a single 
i.c.v. injection of the peptide [27]. This model has been 
used to investigate pathogenesis and therapeutics of AD. 
Memory impairment in the passive avoidance test was 
also confirmed in mice two weeks after the i.c.v. injec-
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Table 1. Effect of A. arguta on brain cholinesterase activity 
in mice

Group   Dose Cholinesterase activitya

(μmol/h/mg protein)

Control  - 75.4 ± 4.6

Aβ (25-35)   15 nmol/animal  93.2 ± 6.3#

+ A. arguta   25 mg/kg 75.2 ± 4.2

+ A. arguta   50 mg/kg 75.5 ± 5.8

+ A. arguta   100 mg/kg   67.1 ± 4.8**

a Results are expressed as the means ± S.E.M. of acetylthio-
choline concentration hydrolyzed by cholinesterase preparation 
of brain homogenate for 1 h (n = 8 mice/group). #P<0.05 vs. 
control, **P<0.01 vs. Aβ (25-35) alone. 
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tion of Aβ (25-35) in the current study. Chronic treatment 
with A. arguta (50 and 100 mg/kg) effectively protected 
the mice against Aβ (25-35)-induced memory deficit. 
This result is consistent with its protective effect on Aβ 
(25-35)-induced neurotoxicity in cultured neurons. Stud-
ies have indicated that oxidative stress in the pathology 
of AD is responsible for the onset of cognitive dysfunc-
tion as well as progression of the disease [28, 29]. A high 
level of Aβ is responsible for the increased appearance 
of ROS such as superoxide (O2-) and NO in AD, which 
produce ONOO- via a rapid interaction [30, 31]. A scav-
enger of ONOO- was confirmed to protect against Aβ 
(25-35)-induced memory impairment [32]. A. arguta in-
hibited H2O2-induced neuronal cell death in the present 
study. A variety of anti-oxidant compounds such as cat-
echin and epicatechin have been isolated from A. arguta 
[14, 33]. These compounds have been confirmed to ex-
ert significant neuroprotective activities against Aβ- and 
H2O2-induced neurotoxicity in cultured neurons [34, 35]. 
Furthermore, A. arguta was shown to protect cultured 
cortical neurons against glutamate-induced neurotoxicity 
via inhibition of [Ca2+]i increase and ROS generation in 
our previous study [36]. Therefore, the neuroprotective 
effects of A. arguta on Aβ (25–35)-induced neuronal cell 
death and memory impairment could be attributable to 
these antioxidant components in the current study.

Cholinergic transmission is crucial to learning and 
memory, and its alteration is considered one of the main 
causes of cognitive disorders such as AD [5]. Aβ accumu-
lation associated with cognitive impairment in AD is ac-
companied by an increase in cholinesterase activity [37]. 
Cholinesterase activity in the brains of Aβ (25-35)-in-
jected mice significantly increased, but was inhibited by 
chronic administration of A. arguta in the present study. 
These results suggest that A. arguta could ameliorate 
memory impairment by inhibiting cholinesterase activ-
ity. The results of the present study provide a mechanistic 
explanation for the protective effects of A. arguta against 
Aβ (25-35)-induced neuronal cell death and memory im-
pairment. In conclusion, these results demonstrate the 
possibility of A. arguta having neuroprotective effects 
in AD brains that prevent progression of the disease and 
may provide a pharmacological basis for its therapeutic 
use in the prevention of neurodegeneration in AD. 
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