
The ubiquitous Na, K-ATPase is a membrane-bound ion 
pump located in the plasma membrane in all animal cells 
and plays an essential role in a variety of cellular functions. 
Studies in several organisms have shown that this protein 
regulates different aspects of embryonic development and is 
responsible for the pathogenesis of several human diseases. 
Na, K-ATPase is an important factor for retinal develop-
ment, and combinations of the isoforms of each of its sub-
units are expressed in different cell types and determine its 
functional properties. In this study, we performed RT-PCR 
assay to determine temporal expression and in situ hybrid-
ization to determine spatial expression of Na, K-ATPase 
β2 isoform (atp1b2) in Xenopus laevis. Focusing on retinal 
expression to distinguish the specific expression domain, 
we used retinal marker genes sox4, sox11, vsx1, and pax6. 
Xenopus atp1b2 was expressed from late gastrulation to the 
tadpole stage. Using whole mount in situ hybridization, we 
showed that Xenopus atp1b2 was expressed broadly in the 
eye, the whole surface ectoderm, and gills. In situ hybridiza-
tion on sections revealed detailed and specific expression in 
the outer nuclear layer of the retina, which consists of two 
major classes of photoreceptors, rods and cones, surface 
ectoderm, pharyngeal epithelium, and gills. These findings 
indicate that atp1b2 may play an important role for the de-
velopment of Xenopus retina.

Key words: Na, K-ATPase β2 isoform, outer nuclear layer, 
retina, pharyngeal epithelium, Xenopus 

Original Article

pISSN 1976-7447, eISSN 2287-7363
J Biomed Res 2014;15(4):194-199
http://dx.doi.org/10.12729/jbr.2014.15.4.194
Received 21 Nov. 2014, Revised 6 Dec. 2014, Accepted 11 Dec. 2014 

Na, K-ATPase β2 isoform (atp1b2) expressed in the retina of Xenopus

Introduction
The vertebrate retina is a light-sensitive layer of tissue, 

lining the inner surface of the eye. It’s a model for study-
ing mechanism underlying neural cell proliferation, fate 
choice, signaling and tissue patterning due to its acces-
sibility and simplicity. The retina has six major classes of 
neurons and a single class of glial cells. The outer nuclear 

layer consists of cell bodies of rods and cones. The inner 
nuclear layer contains the Muller cells, horizontal, bipo-
lar and amacrine interneurons. The ganglion cell layer 
contains nuclei of ganglion cells, the axons of which be-
come the optic nerve fibers for messages and some dis-
placed amacrine cells. The ganglion cells send their ax-
ons through the optic nerve to the brain. In amphibians, 
the site of continuous neurogenesis is in the periphery of 
the retina and allowing it to grow through the lifespan of 
the animals [1, 2].

In the retina the Na, K-ATPase restores Na+ and K+ gra-
dients used by the photoreceptor dark current, synaptic 
activity, action potentials, and transmitter uptake. Inner 
segments of the outer nuclear layer of retina have the 
high concentrations of Na, K-ATPase [3]. The ubiquitous 
Na, K-ATPase is a membrane bound ion pump located in 
the plasma membrane in all animal cells, where it main-
tains the electrochemical gradients of sodium and potas-
sium ion across the membranes and plays an essential 
role for variety of cellular functions including osmoreg-
ulation, sodium coupled transport of variety of organic 
molecules, neuronal and muscle cells activity. The Na, 
K-ATPase is composed of two non-covalently linked 
subunits: catalytic α subunit as well as β subunit which is 
required for the structural and functional maturation of α 
subunit [4-11].

The β subunit is a type II glycosylated membrane pro-
tein required for the modulation of sodium and potassium 
ion of the functional enzyme [12, 13]. In mice, deficiency 
of β2 (atp1b2) exerts motor incoordination, tremors and 
paralysis of the extremities [14]. The atp1b2 expression 
abrogates glioblastoma-derived brain tumor-initiating 
cells in human [15]. Genetically modified atp1b2 sub-
units are associated with apoptosis of photoreceptors 
in mice [14, 16, 17]. In postnatal mouse, increases in 
atp1b2 expression in bipolar cells occur very late, coin-
ciding with synaptogenesis in the inner plexiform layer 
[18]. Here, we report the temporal and detailed expres-
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Materials and Methods
Xenopus laevis Husbandry

Xenopus laevis was handled in accordance with animal 
welfare regulations of Institutional Animal Care and Use 
Committees (IACUC), Chonbuk National University 
Laboratory Animal Centre, South Korea. Xenopus laevis 
embryos were maintained according to standard proto-
cols. All efforts were made to minimize the discomfort 
of animal used.

Reverse Transcriptase Polymerase Chain Reaction
Total RNA was extracted and digested with DNase I and 

purified with RNeasy cleanup kit (Qiagen). First strand 
cDNA was synthesized from stage 35 embryos with Re-
vertAid™ First Strand cDNA Synthesis Kit (Fermen-
tas). RT-PCR was performed by using Maxim RT-PCR 
Premix Kit (iNtRON). The partial sequences of the X. 
laevis atp1b2, vsx1 and pax6 ORF were amplified using 
PCR from stage 30 cDNA using a set of primers designed 
against two conserved domain regions of each gene in 
several species. The resulting PCR products of 1,018 bp 
for atp1b2, 1,002 bp for vsx1 and 1,010 bp for pax6 were 
purified, subcloned into a pGEM-T Easy vector (Pro-
mega), and sequenced. Primers designed for cloning are 
shown in Table 1. The PCR conditions were 95°C for 30 
seconds, 45°C for 30 seconds, 72°C for two minutes for 
35 cycles, and final extension at 72°C for 15 minutes.

In situ hybridizations
Xenopus laevis eggs were collected, fertilized, and 

embryos were cultured under standard procedure in am-
phibian [19]. Anti-sense Digoxigenin-labeled probe was 
transcribed as the standard procedures [20]. The atp1b2 
plasmids were linearized with Spe I and transcribed with 
T7 polymerase. The retinal marker sox4, sox11 plasmids 
were linearized with Cla I and EcoR V, respectively, and 
transcribed with T7 polymerase. The other retinal marker 
vsx1 and pax6 plasmids were linearized with Sac II and 
transcribed with SP6 polymerase. Whole mount images 
were taken on an Olympus MV × 10 microscope.

Stage 27, 30, 35, 41 and 47 embryos were dehydrated 

with a series of ethanol, transferred to xylene, and then 
embedded in paraffin. Serial sections of 12 µm were cut 
with microtome (Thermo, MICROM, HM 325). Anti-
sense Digoxigenin-labeled probe was transcribed for in 
situ hybridization on sections and counterstained with 
eosin. The images were acquired digitally using a Leica 
DM 2500 microscope.

Histological analysis
Stage 47 embryos were dehydrated with a series of eth-

anol, transferred to Xylene, and then embedded in paraf-
fin. Serial sections of 5 μm were cut with microtome and 
stained with hematoxylin and eosin.

Results
Temporal expression analysis

The temporal expression patterns of Xenopus laevis 
atp1b2 (Fig. 1) were analyzed by RT-PCR using RNA of 
different developmental stages [21]. The atp1b2 expres-
sion, which was not observed during early cleavage stag-
es (stage 1~9), was observed at the late gastrulation stage 
(stages 11.5) and continued to be present until stage 40.

Spatial expression analysis
Embryos of stage 15, 20, 30 (tailbud), 40 and stage 45 

(tadpole) were used to examine the tissue distribution of 
Xenopus atp1b2. We were interested in establishing the 
onset of atp1b2 expression during Xenopus retinal de-
velopment. The results of in situ hybridization analysis 
were shown in Fig. 2. Whole mount in situ hybridiza-
tion showed that in early neurula stage embryos (stage 
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sion analysis of atp1b2 during Xenopus embryogenesis.

Fig. 1. Temporal expression of atp1b2 during Xenopus 
development. Expression was analyzed by RT-PCR using 
RNA isolated from embryos at the indicated developmental 
stages. Elongation factor 1 alpha (Ef1α) was used as an internal 
control. Lane (-) shows a negative control in absence of RNA.

Table 1. Primer sequences for cloning and RT-PCR

Gene 
Name

Primer Sequence
Gene ID

Forward Reverse 

atp1b2 
RT-PCR TCGCATCAACAAGTGAAAGC TCGCATCAACAAGTGAAAGC

NM_001086893
Cloning CCGTCATCTTCCTCATTGGT CCGTCATCTTCCTCATTGGT

vsx1 Cloning AGCAAAATCAAAGGGCAAGA AGCAAAATCAAAGGGCAAGA NM_001096722

pax6 Cloning GCCACATTCCCATTAGCAGT GCCACATTCCCATTAGCAGT NM_001085944



15) Xenopus atp1b2 was expressed in the whole neuro-
ectoderm (Fig. 2A) and at late neurula stage (stage 20) it 
was expressed in the whole surface ectoderm (Fig. 2B). 
At tailbud stage (stage 30) atp1b2 was expressed in the 
eye and the developing brain with entire epidermal cells 
(Fig. 2C). Xenopus atp1b2 expression was observed in 
the developing gills in tadpoles (stage 40 and 45) along 
with other expression domain (Figs. 2D and 2E). Gene 
expression persisted at a high level at least until stage 45, 
the last stage examined in the present study.

Whole mount in situ hybridization revealed that Xeno-
pus atp1b2 was expressed in the eye at stages 30 to 45. 
To determine the specific layer in which atp1b2 was ex-
pressed, we performed in situ hybridization on the serial 
sections of stage 30, 35, 41 and 47 embryos. At tailbud 
stage (stage 30) Xenopus atp1b2 was expressed in the 

retina and distinguishingly in the epidermal cells (Fig. 
2F). At stage 35 we found an exclusive expression do-
main that was pharyngeal epithelium (Figs. 2G and 2H) 
and its expression persisting as the same pattern at stage 
41 including the lateral prominence for gills (Figs. 2I and 
2J). In tadpole (stage 47), the expression of almost the 
same domains including neural tube and the future brain 
also persisted, but at this stage the retinal expression was 
more specific in the outer nuclear layer of retina (Fig. 
2K).

Na, K ATPase β2 subunit expression in the retina 
of eye

We also performed in situ hybridization on sections with 
different proneural and panneural retinal cell markers. We 
used sox4 and sox11 to visualize ganglion cell layer, pax6 
to visualize amacrine and ganglion cells, vsx1 to detect 
bipolar cells and compare the expression with atp1b2. 
After conducting in situ hybridization on sections, it was 
observed that atp1b2 was expressed in the retina at stage 
27, in contrast to atp1b2, and all other marker genes were 
expressed in the retina at this stage (Figs. 3A-E).  Xeno-
pus atp1b2, vsx1, and pax6 were weakly expressed in the 
retina at stage 30 whereas sox4 and sox11 were strongly 
expressed (Figs. 3F-J). Since Xenopus atp1b2 was ex-
pressed in the retina we have sectioned later stage to see 
the specific layer of expression. At stage 35, atp1b2 was 
expressed in outer part of the retina and among the retinal 
marker genes sox4 and sox11 were expressed strongly in 
the ciliary marginal zone (CMZ) whereas pax6 was not 
expressed in the CMZ (Figs. 3K-O). 

The specific retinal layer was not clearly detectable at 
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Fig. 2. Developmental expression of atp1b2 by in-situ 
hybridization. Whole mount in situ hybridization results (A-
E). Xenopus atp1b2 was expressed in the neuroectoderm at 
stage 15 (A), in the entire epidermal cell layer at stage 20 (B), 
in the surface ectoderm and in the eye and brain at stage 30 
(C), and in the brain, eye, developing gills along with surface 
ectoderm at stage 40 and 45 respectively (D, E). F, G, H, I, J 
and, K are the results of in situ hybridization on serial sections 
at different stages. The atp1b2 was expressed in the epidermal 
cell layer and retina at stage 30 (F) and 35 (G), respectively. It 
was expressed in the pharyngeal epithelium at stage 35 (H) and 
in the epidermal cell layer, retina, pharyngeal epithelium along 
with a projections for developing gills at stage 41 (I, J). The 
expression of atp1b2 persisted in the brain and specifically in 
the outer nuclear layer of retina at stage 47 (K). Scale bar=200 
μm.
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Fig. 3. Expression analysis of atp1b2 in the retinal development 
before cellular differentiation. Transverse sections were 
performed at three different stages along the anteroposterior 
axis. Each row shows sections of different stages embryos and 
each column shows expression of different marker genes for 
retinal development. Expression of atp1b2, sox4, sox11, vsx1 
and pax6 at stage 27 (A-E), at stage 30 (F-J), at stage 35 (K-O) 
respectively. Scale bar=100 μm.



Na, K-ATPase β2 isoform (atp1b2) expression in Xenopus retina 197

stage 41 but we found the different domain of expres-
sions (Figs. 4A-E). At stage 47, Xenopus atp1b2 was 
specifically expressed in the outer nuclear layer of retina 
whereas sox4 and sox11 in the inner nuclear layer and 
ganglion cell layer, vsx1 in the inner nuclear layer, and 
pax6 were expressed both in the inner nuclear layer and 
ganglion cell layer (Figs. 4F-J). 

Discussion
The atp1b2 was first cloned as an adhesion protein and 

there is some evidence for its mediation of cell–cell in-
teractions [14]. The question arises whether it could play 
a role in cell adhesion and histogenesis. Its only early 
expression in the mouse retina, however, was in photo-
receptors that have already taken up position scleral to 
the still proliferating progenitor cells [22, 23]. Its expres-
sion in bipolar cells occurred long after histogenesis and 
appeared to reflect the increased need for ion transport 
consequent to synaptogenesis [16]. Investigation of the 
retina thus supports a role for atp1b2 only in Na, K-
ATPase activity.

In this study, we focused that atp1b2 is expressed in 
the outer nuclear layer of retina in developing Xenopus 
embryo. We here provide a detailed description of the tis-
sue specific expression of atp1b2 isoform during Xeno-
pus embryogenesis and thereby extend earlier finding by 
others.

The vertebrate retina consists of three nuclear layers of 
retina, the outer nuclear layer, the inner nuclear layer, and 
ganglion cell layer. Among them the outer nuclear layer 
consists of two major classes of photoreceptors, rods and 
cones [24]. Our data showed the expression of atp1b2 in 
the outer nuclear layer. To detect the specific layer of ex-
pression we also observed the expression of other retinal 

marker genes, where sox4 and sox11 were expressed in 
the inner nuclear layer and ganglion cell layer [25], pax6 
was expressed in the inner nuclear layer and ganglion cell 
layer [26], and vsx1 was expressed in the inner nuclear 
layer of retina [27]. The pax6 expression was also devoid 
of the mature cells of the outer half of the retina and CMZ 
[28]. Tissue specific expression was summarized in Table 
2. It is notable that in some cell types, elevated levels of 
particular Na, K-ATPase subunit isoforms (atp1a3 with 
atp1b2 in photoreceptors) preceded significantly other 
phenotypic differentiation. In most other cases, however, 
detectable expression coincided with the adoption of dif-
ferentiated characteristics and upregulation correspond-
ed with increases in retinal function.

Numerous studies have now confirmed that Na, K-
ATPase subunit isoform composition has effects on the 
affinities of the enzyme for Na+, K+, and ouabain [3, 29]. 
Substitution of atp1b2 or atp1b3 for atp1b1 (as occurs in 
photoreceptors) increases affinity for Na+ in Sf-9 cells 
[3, 30] but may have different effects in other cells with 
other isoforms [31, 32].

We also observed the expression of atp1b2 in the pha-
ryngeal epithelium. The homologues of atp1b2 have also 
been confirmed in some other vertebrates [33, 34]. Along 
with these expression atp1b2 was also expressed in the 
developing brain, developing gills, and whole epidermal 
cells. 

The overall conclusion of the present study is that the 
atp1b2 may have an important role for the development 
of outer nuclear layer of retina in developing Xenopus. 
However, further studies will be necessary to demon-
strate a direct role of atp1b2 in the retinal development 
along with its other expression domain. 
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Fig. 4. Expression analysis of atp1b2 in the retinal development 
after cellular differentiation. Expression of Xenopus atp1b2 in 
the retina at stage 41 (A-E) and at stag 47 (F-J), hematoxylin 
and eosin stained embryos (stage 47) showing different layer of 
retina (K), and diagram of eye showing different layer of retina 
(L). Scale bar=100 μm.
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Table 2. Tissue-specific expression of atp1b2 along with other 
marker in the retina during Xenopus development

Tissue Specified atp1b2 sox4 sox11 vsx1 pax6

Ciliary Marginal Zone (CMZ) + − − − −

Retinal pigment epithelium − − − − −

Outer nuclear layer + − − − −

Inner nuclear layer − + + + +

Ganglion cell layer − + − − +

“+”, gene strongly expressed in the corresponding tissue; “−”, 
undetected.
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