
Poria cocos is a well-known traditional Chinese traditional 
medicine (TCM) that grows around roots of pine trees in 
China, Korea, Japan, and North America. Poria cocos has 
been used in Asian countries to treat insomnia as either 
a single herb or part of an herbal formula. In a previous 
experiment, pachymic acid (PA), an active constituent of 
Poria cocos ethanol extract (PCE), increased pentobarbital-
induced sleeping behaviors. The aim of this experiment was 
to evaluate whether or not PCE and PA modulate sleep 
architectures in rats as well as whether or not their effects 
are mediated through GABAA-ergic transmission. PCE and 
PA were orally administered to individual rats 7 days after 
surgical implantation of a transmitter, and sleep architec-
tures were recorded by Telemetric Cortical encephalogram 
(EEG) upon oral administration of test drugs. PCE and 
PA increased total sleep time and non-rapid eye movement 
(NREM) sleep as well as reduced numbers of sleep/wake 
cycles recorded by EEG. Furthermore, PCE increased in-
tracellular chloride levels, GAD65/67 protein levels, and α-, 
β-, and γ-subunits of GABAA receptors in primary cultured 
hypothalamic neuronal cells. These data suggest that PCE 
modulates sleep architectures via activation of GABAA-ergic 
systems. Further, as PA is an active component of PCE, they 
may have the same pharmacological effects.
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Poria cocos ethanol extract and its active constituent, pachymic acid, 
modulate sleep architectures via activation of GABAA-ergic transmission 
in rats

Introduction
Poria cocos is a well-known traditional Chinese tradi-

tional medicine (TCM) that grows around the roots of 
pine trees in China, Korea, Japan, and North America [1]. 
Poria cocos has been used in Asian countries to treat in-

somnia as either a single herb or part of an herbal formula 
[2]. Earlier studies have shown that the main ingredients 
of this herbal medicine are triterpenoids. Pachymic acid 
(PA), a lanostane-type triterpenoid, possesses anti-emet-
ic, anti-inflammatory, and anti-cancer properties [3-8]. 
Recently, we reported that PA also enhances pentobarbi-
tal-induced sleeping behaviors [9]. 

Insomnia is a highly prevalent condition defined as per-
ceived inadequate sleep, with patients typically present-
ing difficulty falling asleep, difficulty maintaining sleep, 
or poor quality sleep [10]. Due to the widespread nature 
of this condition, more effective treatments are continu-
ously needed. GABAA receptors have diverse modulating 
binding sites and broad heterogeneity and are the main 
targets of prescribed sleep medicines such as benzodi-
azepines, barbiturates, and neurosteroids [11]. Recording 
electroencephalography (EEG) in animals is the most 
important technique for revealing the sleep architectures 
of hypnotics [12, 13]. Further, the sleep-enhancing ef-
fects of various treatments have been investigated us-
ing an EEG study in rodents [14]. Sleep is composed of 
two principal phases in mammals: rapid eye movement 
(REM) sleep and non-REM (NREM) sleep. REM sleep 
is characterized by fast waves with muscle atonia, brain 
activation, and eye movement, whereas NREM sleep is 
characterized by slower frequency delta waves [15]. It is 
also important to understand the abilities of Poria cocos 
ethanol extract (PCE) and PA to alter sleep architectures 
since sleep disorders can be caused by changes in REM 
and NREM sleep.

Sedative-hypnotics are commonly used to treat insom-
nia and modulate anxiety levels by targeting GABAA 
receptors, which are the primary mediators of fast in-
hibitory neurotransmission in the central nervous system 
(CNS) [16]. These receptors, which modulate the func-

Vikash Kumar Shah1, Sam-Shik Na1, Myong-Soo Chong2, Jae-Hoon Woo1, Yeong-Ok Kwon1, Mi Kyeong Lee1, Ki-Wan Oh1*

1College of Pharmacy and Medical Research Center (MRC), Chungbuk National University, Cheongju 28644, Korea
2College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea

*Corresponding author: Ki-Wan Oh,  
College of Pharmacy and Medical Research Center (MRC), Chungbuk National University, Cheongju 28644, Korea
Tel: +82-43-261-2827, E-mail: kiwan@chungbuk.ac.kr



from Chengdu Biopurify Phytochemicals Ltd. (Chengdu, 
Sichuan, China). Dimethyl sulfoxide (DMSO) was pur-
chased from Amresco (Solon, Ohio, USA) and muscimol 
from Tocris Bioscience (Bristol, UK). Pentobarbital so-
dium and diazepam were obtained from Hanlim Pharm. 
(Seoul, Korea) and Samjin Pharm. (Seoul, Korea), respec-
tively. Fetal bovine serum (FBS) and Dulbecco’s Modi-
fied Eagle Medium (DMEM) were obtained from GIBCO 
(Grand Island, NY, USA). The Cl− sensitive fluorescence 
probe N-(ethoxycarbonyl-methyl)-6-methoxyquinolinium 
bromide (MQAE) was purchased from Sigma-Aldrich (St 
Louis, MO, USA). Specific rabbit polyclonal antibodies 
against GABAA receptors subunits or GAD65/67 as well as 
corresponding conjugated anti-rabbit immunoglobulin G-
horseradish peroxidase were obtained from Abcam (Cam-
bridge, UK). Chemiluminescent horseradish peroxidase 
substrate was purchased from Millipore (Billerica, MA, 
USA).

Animals
Male Sprague-Dawley rats weighing 250~280 g each 

were purchased from Samtako (Osan, Korea). Each ani-
mal was housed individually in acrylic cages (45 × 60 × 
23 cm) with water and food available ad libitum under 
an artificial 12-hr light/dark cycle (light on at 7:00 a.m./
off at 7 p.m.) in a room with a constant relative humid-
ity (50~52%) and temperature (22 ± 2°C). Animals were 
kept in the departmental holding room 1 week before 
testing. This study was performed in accordance with the 
National Institute of Health Guide for Care and Use of 
Laboratory Animals (NIH publication No. 85-23, revised 
1985), and the Institutional Animal Care and Use Com-
mittee of Chungbuk National University approved the 
protocol.

Surgery
After a minimum 7-day acclimation period, each rat 

was implanted with a transmitter (TL10M3-F50-EEE; 
Data Sciences International, St. Paul, MN, USA) for 
recording EEG and activity via telemetry as previously 
described [21]. The body of the transmitter was subcu-
taneously implanted off the midline and posterior to the 
scapula, followed by attachment to the skin with three 
sutures for stabilization. Transmitters led subcutaneously 
(s.c.) to the skull, and bare ends were placed in contact 
with the dura through holes in the skull (A: 2.0 [Bregma], 
L: 1.5; P: 7.0 [Bregma], L: 1.5 contra-lateral) [22]. The 
electrodes were anchored to the skull with screws and 
dental cement. All surgical procedures were performed 
stereotaxically under aseptic conditions. Surgical anes-
thesia was achieved with pentobarbital (50 mg/kg, i.p), 
and surgical procedures were made to minimize animal 
suffering. Telemetric recording of cortical EEG and ac-
tivity was conducted using procedures similar to previ-

tion of chloride ion channels, are activated by the inhibi-
tory neurotransmitter GABA. A large family of constitu-
ent subunits (α1-6, β1-3, γ1-3, δ, ρ1-3, θ, π and ε) are 
present among various GABAA receptor subtypes [17]. 
Herbs such as valerian (Valeriana officinalis), St. John’s 
wort (Hypericum perforatum), passion flower (Passiflora 
incarnata), hops (Humulus lupulus), and kava kava (Pip-
er methysticum) are often used for treatment of mild in-
somnia in Western societies [18]. These herbs have been 
found to exert sedative-hypnotic effects by regulating 
neurotransmitters such as γ-aminobutyric acid (GABA)-
ergic or serotonergic systems in the CNS [19]. In addi-
tion, compounds extracted from these medicinal plants 
are of great importance in treatment of insomnia [20].

The aim of this study was to determine whether or not 
PCE and PA could serve as potential sedative/hypnotic 
agents to induce sleep. Unlike previous studies, this re-
port focuses on whether or not PCE and PA could modu-
late sleep architectures in rats. Furthermore, intracellular 
chloride influx and over-expression of GABAA-receptors 
were measured to understand possible mechanisms and 
to obtain useful information for treatment of insomnia.
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Fig. 1. Chemical structure of pachymic acid. 

Materials and Methods
Plant materials and extract preparation

Poria cocos was purchased from Gyeongdong Herbal 
Market (Seoul, Korea). The sample was authenticated by 
Professor Mi Kyeong Lee, who works at the Laboratory 
of Pharmacognosy, Chungbuk National University. The 
voucher specimen (CBNU2013-PC) was kept in the her-
barium of the department. Samples were piled up on the 
ground and air-dried. The air-dried sample (500 g) was 
extracted with 50% ethanol three times at room tempera-
ture. Extract was concentrated under pressure to yield a 
brown crude extract, which was centrifuged, filtered, and 
concentrated in a vacuum using a rotary evaporator to 
yield dried powder (100 g).

Chemicals and reagents
Pachymic acid (Fig. 1, purity HPLC, 98%) was purchased 



ous reports. For the EEG signal, transmitter gain was set 
at − 0.5/+ 0.5 volts per/units × 2, and raw signals generat-
ed from the transmitter were in the range of 0.5~20.0 Hz. 
Signals were processed using a Data Sciences Interna-
tional analog converter and routed to an AD converter 
(Eagle, PC30, USA) housed in a personal computer (PC). 
An AD converter was used to digitize the EEG and ac-
tivity signals at 128 Hz. Digitized data were transferred 
to the computer and displayed graphically. Online fast 
Fourier transformation (FFT) was performed on the EEG 
data at 10-sec intervals during data acquisition (1,024 
samples) after Hanning window treatment. FFT analy-
sis generated power density values from 0 to 20 Hz at a 
resolution of 0.5 Hz. FFT data were further averaged in 
the range of 0 to 20 Hz every 10 sec. Sleep data and FFT 
results were saved to hard disk every 10 sec for additional 
offline analysis. Movement of the animal in relation to 
the telemetry receiver generated transistor-transistor log-
ic (TTL) pulses, which were collected and counted as a 
measure of activity. PA was suspended and dissolved in 
0.1% DMSO, and PCE was dissolved in physiological 
saline. PCE (100 mg/kg) and PA (5 mg/kg) were admin-
istered orally to rats 1 hr prior to the recording. Animals 
were allowed to habituate to a polygraphic recording en-
vironment in which they could freely move. Then, poly-
graphic signs of sleep-wake activities were recorded for 
6 hr starting at 10:00 am.

Analysis of sleep architectures
Wakefulness, NREM, and REM sleep were determined 

from the digitized data at 10-sec intervals using sleep 
analysis software, SleepSign 2.1 (KISSEI Comtec, Mat-
sumoto, Japan). This software identifies wakefulness as 
a high-frequency, low-amplitude EEG and NREM based 
on the presence of spindles with slow waves. EEG pow-
er during REM is significantly reduced lower frequency 
δ-waves (0.75~4.0 Hz) and increased θ-wave activity 
(5.0~9.0 Hz, peak at 7.5 Hz). Data from seven or eight 
rats in each group were analyzed. Time periods spent in 
NREM and REM, total sleep time (NREM + REM), and 
numbers of sleep-wake cycles were processed in a 6-hr 
period for each rat.

Cell culture
Hypothalamus neuronal cells in primary culture were 

prepared from 8-day old Sprague-Dawley rats as previ-
ously described [23]. These cells expressed functional 
GABAA receptors after being cultured for 8 days [24, 
25]. Briefly, cells were plated (1.0 × 105 cells per 0.2 mL) 
in 96-well microplates or (5.0 × 105 cells per mL) 60-
mm dishes coated with poly-L-lysine (50 μg/mL; Sigma-
Aldrich, St. Louis, MO, USA), followed by culture in 
DMEM nutrient and neurobasal A media supplemented 
with 10% heat-inactivated fetal bovine serum, glutamine 

(2.0 mM), gentamicin (100 μg/mL), antibiotic-antimy-
cotic solution (10 μg/mL; Sigma-Aldrich), and potassi-
um chloride (25 mM). A high concentration of potassium 
was necessary to induce persistent depolarization, which 
promotes survival of granule cells. Cells were incubated 
for 6~9 days in a humidified 5% CO2/95% air atmosphere 
at 37°C. Cytosine arabinofuranoside (final concentration, 
10 μM; Sigma-Aldrich) was added to cultures for 18~24 
hr after plating to inhibit proliferation of non-neuronal 
cells.

Measurement of intracellular Cl− influx
Intracellular Cl− concentration ([Cl−]i) of rat hypotha-

lamic neurons was estimated using the Cl−-sensitive 
fluorescence probe MQAE with slight modification of 
a previously described method [26]. Buffer (pH 7.4) 
contained 2.4 mM HPO4

2−, 0.6 mM H2PO4
−, 10 mM 

HEPES, 10 mM D-glucose, and 1 mM MgSO4. A vari-
ety of MQAE-loading conditions were assessed. Cells 
were incubated overnight in medium containing 10 mM 
MQAE. After loading, cells were washed three times in 
appropriate Cl−-containing or Cl−-free buffer. The buffer 
was replaced with buffer or without the compounds or 
Cl− free buffer. Repetitive fluorescence measurements 
were conducted immediately using a SpectraMax M2e 
Multi-Mode Microplate Reader (excitation wavelength: 
320 nm, emission wavelength: 460 nm; Molecular De-
vices, Downingtown, PA, USA). Data are presented as 
the relative fluorescence F/F0, where F is the fluorescence 
as a function of each sample and F0 is the fluorescence 
without Cl− ions. The F/F0 values were directly propor-
tional to [Cl−]i.

Expression of GAD65/67 and GABAA-receptor sub-
units

Primary rat hypothalamic neuronal cells were cultured 
for 8 days. PCE was dissolved in 0.9% physiological sa-
line and diluted sequentially in culture medium to final 
concentrations of 50 and 100 μg/mL. Cells were treated 
for 1 hr. The control group was treated with vehicle at the 
same dilution used for drug treatment. Culture medium 
was completely replaced with fresh medium containing 
the appropriate drug. Cells were harvested and treated 
with lysis buffer. Extracts were centrifuged at 13,000 × 
g at 4°C for 10 min, and the supernatant was recovered. 
Protein concentration of the supernatant was determined 
and stored at 20°C. Total protein concentration was deter-
mined by the modified Lowry method using bovine serum 
albumin as a standard [27].

For Western blot analysis, an equal amount of protein was 
added to each lane, and sodium dodecyl sulfate polyacryl-
amide gel electrophoresis (SDS-PAGE) was performed us-
ing 10% polyacrylamide gels. Proteins were transferred to 
polyvinylidene difluoride (PVDF) membranes (Hybond-P, 
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GE Healthcare, Amersham, UK) using a semidry transfer 
system. Blots were blocked for 1 hr at room temperature 
with 5% (w/v) BSA and incubated with primary antibod-
ies. To detect glyceraldehyde-3-phosphate dehydrogenase 
(GADPH), blots were blocked with for 1 hr at room tem-
perature with 5% (w/v) skim milk in Tris-buffered saline 
solution (TBS) containing 0.1% Tween-20. The mem-
brane was incubated with specific rabbit polyclonal anti-
bodies against GABAA receptors subunits (diluted 1:2,500 
in TBS containing 0.1% Tween-20, 5.0% BSA) and rab-
bit anti-GAD65/67 polyclonal antibody (diluted 1:2,500 in 
TBS containing 0.1% Tween-20, 5.0% BSA). Blots were 
then washed and incubated with horseradish peroxidase 
conjugated secondary antibody: goat anti-rabbit IgG (di-
luted 1:3,000 in TBS containing 0.1% Tween-20, 1.0% 
BSA). Immunoreactive bands were developed with a BM 
chemiluminescence detection kit (Roche Diagnostics, 
Mannheim, Germany). Quantitative analysis of detected 

bands was performed with densitometric scanning, and 
all values were normalized to the amount of GAPDH in 
the sample, which was measured as follows. All immu-
noblots were stripped, incubated with sheep anti-GAPDH 
antibody (1:2,500 in TBS containing 0.1% Tween-20), 
subsequently incubated with anti-sheep IgG-conjugated 
secondary antibodies, rabbit anti-sheep IgG (1:3,000 in 
TBS containing 0.1% Tween-20), and developed to con-
firm equal protein loading.

Statistical analysis
All statistical analyses were conducted using SigmaStat 

software (SPSS, Chicago, IL, USA). Data are expressed 
as mean ± S.E.M. The significance of the compounds’ 
effects was assessed by analysis of variance (ANOVA). 
Significant differences after one-way ANOVAs were 
measured by post hoc Holm-Sidak test. A P-value<0.05 
was considered to be significant.

A B

C D

Fig. 2. Effects of PCE and PA on number of sleep-wake cycles and sleep architecture. Effects of PCE and PA treatment on sleep-wake 
cycles and sleep architectures are shown. Each column represents the mean with S.E.M. *P<.05, **P<.01 and ***P<.005, compared with 
the control.



cultured neuronal cells
PCE (0.1, 1.0, and 10 μg/mL) significantly increased 

influx of chloride ion in primary cultured neuronal cells 
in a concentration-dependent manner. In addition, pen-
tobarbital (PENT, 10 μM) was used as a positive control 
and significantly increased influx of Cl− in cultured cells 
(Fig. 3).

Effects of PCE and PA on expression of GAD65/67 
and GABAA receptor subunits

To assess whether or not PCE enhances sleeping behav-
iors via biosynthesis of GABA, primary cultured hypo-
thalamic neuronal cells were treated with PCE (50 and 
100 μg/mL) to examine activation of GAD65/67. PCE sig-
nificantly increased protein content of GAD65/67 (Fig. 4). 

Moreover, to assess whether or not PCE activates GA-
BAA receptor subtypes, primary cultured hypothalamic 
neuronal cells were treated with PCE (100 μg/mL), and 
Western blot analysis was used to measure expression 
levels of GABAA receptor subunits. GABAA receptor 
α-,β-, and γ-subunits were overexpressed after cells were 
treated with PCE. Additionally, pentobarbital (10 μM) 
was used as a positive control and led to over-expression 
of protein levels of GABAA-receptor subunits (Fig. 5).

Discussion
Poria cocos is a well-known traditional Chinese herb 

that has long been used in Asian countries to treat a 
range of sleep disorders, such as insomnia, as either a 
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Fig. 3. Effects of PCE on chloride ion influx in primary cultured 
hypothalamic neuronal cells. After culture for 8 days, cells were 
incubated with MQAE overnight and then treated with PCE 
(0.1, 1.0, and 10μg/mL, respectively) and pentobarbital (PENT 
10 μM) 1 hr prior to measurement. Each column represents the 
mean with S.E.M. ***P<.005, compared with the control. CONT 
(control group); PENT (pentobarbital group).

Fig. 4. Effects of PCE on expression of GAD. Immunoblots 
of lysed hypothalamic neuronal cells treated for 1 hr with PCE 
are shown. Each column represents the mean with S.E.M. 
***P<.005, compared with the control.

Fig. 5. Effects of PCE on expression of GABAA receptor 
subunits. Immunoblots of lysed hypothalamic neuronal cells 
treated for 1 hr with PCE are shown. Each column represents 
the mean with S.E.M. *P<.05, **P<.01, ***P<.005, compared 
with the control.

Results
Effects of PCE and PA on number of sleep-wake 
cycles and sleep architectures

PCE (100 mg/kg) and PA (5 mg/kg) were orally admin-
istered to measure sleep architectures by EEG. PCE (100 
mg/kg) and PA (5 mg/kg) caused significant reduction in 
the number of sleep-wake cycles over a 6-hr period (Figs. 
2A and 2C). PA increased NREM, REM, and total sleep 
times and decreased wakefulness (Fig. 2B). Moreover, 
PCE significantly increased NREM and total sleep times 
compared to the control group (Fig. 2D).

Effects of PCE on chloride ion influx in primary 



single herb or part of an herbal formula [2]. Recently, 
PA, a main component of PCE, was shown to increase 
pentobarbital-induced sleeping behaviors via GABAA-
ergic systems [9]. Researchers suggest that the inhibitory 
neurotransmitter GABA is involved in generation of vari-
ous brain rhythmic activities, which can be modulated 
by benzodiazepines. The ultimate goal of this study was 
to evaluate whether or not PCE and its active constitu-
ent, PA, modulate sleep architectures via activation of 
GABAA-ergic transmission in rodents. 

Spectral EEG frequency analysis is a useful analytical 
technique for differentiating sleep/wake state changes 
for sleep-inducing insomnia treatments. Sleep can be 
divided into two major stages: REM and NREM sleep. 
During the early years of sleep research, NREM sleep 
was discovered to play a role in the restoration of physi-
ological functions [28]. REM sleep is characterized by 
fast wave sleep along with muscle atonia, brain activa-
tion, and eye movement. We especially focused on de-
termining whether or not PCE and its active component, 
PA, increase sleep time and alter sleep architectures such 
as REM and NREM sleep. Our experimental data show 
that both PCE and PA caused significant reduction in the 
number of sleep-wake cycles. 

Furthermore, we determined whether or not PCE may 
alter sleep architectures. PCE oral administration notice-
ably enhanced NREM and total sleep times and decreased 
wakefulness and REM sleep. The present data confirm 
that PCE increases total sleeping time and NREM sleep. 
Interestingly, PA increased NREM, REM, and total sleep 
times and decreased wakefulness in rodents based on 
analysis of EEG recording. Thus, it is important that both 
PCE and PA increase sleeping behaviors via GABAA-
ergic mechanisms in the CNS [9]. In terms of herbal 
insomnia treatments, research has revealed that Gano-
derma lucidum prolongs sleep time in rats in a similar 
fashion [14]. PCE and PA are used for their somnogenic 
effects. Previous research revealed that orexin receptor 
antagonists (DORAs) promote sleep that is more similar 
to physiological sleep and quantitatively different from 
that induced by GABAA modulators [29].

The present study focused on whether or not prolonged 
sleeping behaviors by PCE are mediated by GABA-ergic 
systems. Emerging evidence indicates that GABAA re-
ceptors play an important role in the modulation of bar-
biturate-induced sleep through the GABAA-ergic system 
[30]. Increased pentobarbital-induced sleep time can be a 
useful tool for examining inhibitory effects on the CNS, 
and especially for investigating effects on GABAA-ergic 
systems in the CNS [23, 31]. Of note, GABAA modu-
lators have been associated with CNS-related adverse 
events (AEs), including sleep walking, sleep driving, 
sleep eating, amnesia, and cognitive impairment [32-
35]. Moreover, natural products and their derived com-

pounds have been shown to offer neuroprotective and 
anti-inflammatory activities [36, 37]. In addition, our 
study investigated whether or not PCE triggers opening 
of GABA receptor-coupled Cl− channels of GABAA re-
ceptors. Treatment of hypothalamic neuronal cells with 
PCE and pentobarbital significantly increased influx 
of Cl−in this culture model. These effects indicate that 
benzodiazepines act by allosterically binding to GABAA 
receptors and enhance the ability of GABA to increase 
chloride conductance.

GABA is synthesized from glutamate exclusively in 
GABA-ergic neurons by glutamic acid decarboxylase 
(GAD), which consists of two isoforms with molecular 
weights of 65-kDa and 67-kDa and catalyzes formation 
of GABA from glutamic acid [38, 39]. Protein expression 
levels of GAD65/67 were measured in primary cultured hy-
pothalamic neuronal cells. PCE increased protein content 
of GAD65/67 in these cells. Expression studies have in-
dicated that subunit composition determines the GABA 
sensitivity and pharmacological properties of GABAA-

receptors [40-42]. GABAA receptors play an important 
role in neuronal firing patterns and activity of neuronal 
networks. Furthermore, they serve as targets for numer-
ous classes of drugs and are used both in clinical practice 
and as research tools.

GABAA receptors are important therapeutic targets for 
treatment of insomnia since they rapidly inhibit neuro-
transmission and participate in tonic inhibition [43]. 
Structural and physiological heterogeneities of the pen-
tameric composition of GABAA receptors as well as the 
differential distribution of its receptors subtypes in spe-
cific brain areas provide an important basis for the devel-
opment of therapeutic drugs. GABAA receptors with a 
classic high-affinity benzodiazepine binding site contain 
α-, β-, and γ-subunit combinations. Benzodiazepines act 
as facilitators of fast inhibitory neurotransmission in the 
mammalian brain mediated through GABAA receptors, 
which are involved in the regulation of vigilance, anxi-
ety, muscle tension, epileptogenic activity, and memory 
functions [44]. We examined expression patterns of 
α-subunits (α3, α4, α5), β-subunits (β1, β2) and γ-subunit 
(γ3) in GABAA-receptors in primary cultured cerebel-
lar granule cells. Qualitative results from Western blot 
analysis show that both PCE and pentobarbital treatment 
induced over-expression of GABAA receptors subunits. 
Moreover, PCE significantly increased protein level con-
tent in α4, α5, β1, β2, and γ3 subunits.

Over the last decade, scientists have shown increased 
interest in herbal medicines, which contain phytochemi-
cal constituents with long-term health promoting or me-
dicinal qualities as well as anxiolytic and sedative prop-
erties. Ethanol extract of Fructus Schisandrae fruit [45] 
and Gomisin N isolated from Schisandra chinensis were 
shown to have beneficial sedative and hypnotic bioac-
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tivities, which supports their ability to treat insomnia 
[46]. Pharmacological treatments for insomnia may be 
required to reduce sleep latency, increase sleep mainte-
nance, and improve sleep quality in order to successfully 
manage insomnia.

In summary, the present study provides evidence that 
PCE and PA possess not only a sleep-prolonging effects 
but also sleep quality-enhancing effects when adminis-
tered orally to rats. Activation of GABAA-ergic transmis-
sion plays an important role in sleep promotion. These 
results also provide a pharmacological basis for the ther-
apeutic efficacy of PCE and its active component, PA, in 
treatment of insomnia. However, further experiments are 
needed to better elucidate the pharmacological effects of 
other compounds derived from PCE.
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